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Abstract

We accomplish two distinct, but closely connected, tasks in this paper. First,
we look to create a connection between discrete and continuous-time models.
This is done by recasting traditional discrete Ramsey models so they are depen-
dent on the increment of time, ∆t, and then taking the limit of these models
as the size of this increment goes to zero. The resulting models are equivalent
to continuous-time Ramsey models. Second, we examine these models in a
basic adaptive learning framework. We accomplish this by applying exogenous
updating rules to models with a specified stochastic process. After seeing that
our misspecified models converge, we then implement a real-time updating rule
where our agents update their parameter estimates, for a stochastic process,
after observing output for the process itself.



1 Introduction

Macroeconomic modeling in stochastic continuous time has become increasingly pop-

ular, as solution methods for optimization problems in this setting have been intro-

duced to economics literature. Solutions to optimization problems in this setting

take the same form as fluid dynamic problems common in applied mathematics, and

it has taken some time for the mathematical solution techniques to become more

common in economics. The appeal for economic modeling in this framework comes

from several key features of this setting, not just the availability of simple solution

methods. Systems in continuous time can be summarized using sparse matrices that

are simple to evaluate and use in calculations, this leads to fast algorithms that use

minimal computational time. This is an attractive feature that allows for complex

problems with multiple layers of heterogeneity can be easily solved. Solutions in this

system also yield more detailed and easily computed probability density functions

than discrete time solution methods.

These distributional advantages come from close-ties between the stochastic pro-

cesses used to summarize the evolution of key variables in these models and their

probability density functions. Stochastic processes are often defined according to the

distribution of the random variables they represent, and optimization problems that

depend on these processes inherit some of this distributional dependency (this will be

described in more detail in section 2 of this paper). For instance, Gaussian processes,

such as the integral of Brownian motion, have a joint normal distribution for all of the

variables they define. Poisson point processes are similarly defined using a Poisson

distribution. Using these processes that are defined by continuous probability den-

sity functions allows researchers to closely inspect the evolution of the distribution of

variables, such as wealth, with little computational burden.
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Evaluating these distributions in discrete time is more difficult since probability

density functions in this setting are often point masses that truncate the tail-ends

of the distribution. Going forward, these discrete methods are going to become less

favorable as policy becomes more distribution-oriented. Already, the distribution of

wealth and assets is becoming a popular topic when it comes to policy goals. Using

the traditional discrete methods, central banks and other policymakers will be unable

to properly evaluate the effects of their potential actions on distributions of wealth or

assets. Since continuous-time modeling has distributional and computational advan-

tages, this modeling framework will become more attractive and modifying modeling

techniques for continuous-time models will be important. In this paper, we will take

the first steps in examining adaptive learning methods in a stochastic continuous-time

framework.

Many macroeconomic models in both continuous and discrete time depend on

agents’ expectations. Thus far, continuous-time modeling has depended solely on

rational expectations. Using rational expectations limits the model by creating strong

assumptions about the agents’ information set; rational expectations imply that the

agent knows the correct underlying model and that they will respond optimally to the

actions of others. These assumptions are unlikely to hold in the real world, as agents

may not correctly specify a forecast for the model and they may not understand the

actions of others. Therefore, using a different form of expectations that allows for

agents’ to make mistakes maybe closer to reality. This motivates the use of adaptive

learning, a technique that allows for agents to misspecify models and to update their

misspecification once they gain more information.

Currently, adaptive learning has been widely implemented in discrete-time mod-

eling; however, it has not been used in continuous-time models. There are two main

reasons for this, most economists still use discrete-time models and learning is more
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difficult to intuit in continuous-time. As continuous-time modeling becomes more

popular we will want to able to utilize a powerful tool, like adaptive learning, in

this setting. The main goals of this paper are to make continuous-time modeling

seem more intuitive and less niche to economists and to intuitively implement basic

adaptive learning techniques in continuous time.

Sections 2-4 of this paper map out continuous techniques and literature to make

these methods more tractable to economists that focus on discrete modeling. Section

2 gives some mathematical background so that the terminology and motivations of

continuous-time literature make sense to the reader. The next section provides a

literature review that spans a large portion of the economics continuous-time litera-

ture and provides more background on adaptive learning. Despite not being widely

popular, continuous-time literature spans several decades, has many significant con-

tributions, and includes a large number of papers by notable economists. The fourth

section of this paper explores the mathematical relationship between a variety of dis-

crete and continuous-time models, this section should provide a clear link between

these models and make continuous-time modeling more intuitive to those who use

discrete-time models.

Section 5 begins the task of implementing adaptive learning techniques in continuous-

time. A key part of this section is the methodology for finding steady-state solutions in

continuous-time. Although the solution methods for stochastic continuous time mod-

els currently used in economics have only recently been introduced to the literature,

interest in this class of models has existed in the field for a long time. Exploration of

the Ramsey model in stochastic continuous time has been previously studied, notably

by Merton (1975a), Mirrlees (1966), and Mirman (1973). There are several different

methods for implementing a stochastic process in this modeling framework. Some

such as Merton (1975a) have introduced a stochastic process for capital accumula-
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tion. Others such as Achdou et al. (2014) have used stochastic processes to model

productivity. In this paper, we will look at modeling the changes in technological

progress and capital as stochastic processes.

This implementation is more intuitive for several different reasons. First, capital

accumulation in part depends on technological progress thus if technological progress

can change according to this type of process capital accumulation with inherently

depends on this process as well. Additionally, technological progress is a variable

that, in the real world, often seems to constantly change and improve. Therefore, it

is reasonable to assume that other variables like capital stock evolve continuously as

they depend on variables we may model continuously, such as technological progress.

We can observe technological progress growing over time, so agents are likely to

forecast a positive mean and an upward trend. In practice, though we often are

unsure of what sectors or improvements will happen over time, and technological

progress is almost constantly evolving. Technological progress is something that most

believe is constantly improving, because of open-source software and near-constant

technological improvements in modern productivity.

Before further discussing the work in this paper, it worth reiterating the benefits

that come from continuous solution methods. Continuous time models have unique

solutions that can be found using a simple and portable algorithm, and these models

only need a few weak boundary conditions to obtain unique solutions. Additionally,

these solution methods are computationally faster than discrete methods. This means

solving complex economic models with heterogeneity can be done with fewer boundary

conditions and in less time. A simple description of an algorithm to solve for a steady

state solution in this setting is as follows. First, we discretize over the state spaces

in our model. This allows us to maintain the continuous time setting while giving

us discrete state spaces to use in a finite difference algorithm. We then implement
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a finite difference scheme until we get a stable steady state estimate of our value

function. Despite the discretization, this solution method is different and faster than

most discrete methods. Because in this setting, we can summarize the evolution of

our system in large sparse matrices.

We can then take advantage of this discretization to implement traditional dis-

crete learning algorithms in continuous-time. The main difference will be the agent’s

observation over a given time period. When altering adapting learning algorithms

for continuous-time it is tempting to simply use discrete-methods, since the solution

methods for continuous-time problems are discretized. However, this discretization

is only over state-spaces so, we must be careful to maintain continuity in our time-

dimension. This will be important in section 5 when we examine adaptive learning

methods in stochastic continuous time models.

In this paper we work to accomplish this through two different methods, one

method uses supposes that an agent uses a misspecified process to solve for their

steady state and then at discrete time periods gain more information and resolves

the continuous model. The other method supposes that an agent uses ordinary least

squares to create a forecast of model parameters and then at updates this forecast, us-

ing recursive least squares, over intervals of time. The first method demonstrates that

continuous-models respond in a predictable manner when presented with misspecifi-

cation and an exogenous updating rule, and the second provides an intuitive method

for adapting learning techniques to continuous models. As we proceed with learning

in continuous-time, it will be important to picture our time periods as disjoint inter-

vals of time. Thus, in our forecasting model, each forecasting period contains several

observations from our continuous stochastic process. In future work, this could be a

key feature of continuous-time learning.

In sections below, we develop two key results that serve as a primer to learn-
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ing in continuous-time. First, continuous-time models and discrete-time models are

fairly comparable mathematically. This can be seen in section 4, which derives dis-

crete models with an unknown time step (∆t) and then limits these models to their

continuous-time counterparts. Our second result is that basic models in this setting

respond in an expected fashion to new information, through an exogenous and more

discrete updating rule and a more continuous forecasting method. Together these

results reveal that further studies on adaptive learning in continuous-time may be

promising.

The rest of the paper precedes as follows. The next section gives a basic mathemat-

ical background for modeling in this framework. Section three discusses the literature

relevant to stochastic continuous time modeling and adaptive learning techniques in

economics. Section four derives the representative agent model in discrete and con-

tinuous time Section five describes the exogenous learning rule model and provides

the numerical results of this exercise, and section 6 concludes.

2 Mathematical Background

Continuous time optimization problems in economics have a simple general form, and

the continuous time analog of the Bellman equation, the Hamilton-Jacobi-Bellman

can be intuitively derived from the discrete model (Dixit, 1992). Suppose we have

a simple Ramsey model where agents maximize their expected utility per unit time

over time t

E0

∞∑
t=0

b 1
∆t
c∑

n=0

e−ρ(t+n∆t)u(ct+n∆t)∆t, (1)
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where capital evolves according to the following stochastic differential equation

∆kt+∆t = a(kt, ct)∆t+ b(kt, ct)∆Wt, (2)

where ∆Wt is the increment of the Wiener process and the maximum value of n,

b 1
∆t
c, limits value of n to integer values. This floor function will be equal to one

when ∆t = 1. Note that as ∆t→ 1 equation (1) limits to the typical discrete utility

maximization problem with a constant discount factor. The Wiener process can be

written as ε
√

∆t, where ε ∼ N(0, 1). Thus, we can calculate the expectation and

variance of ∆Wt

E[∆Wt] = 0 and E[(∆Wt)
2] = ∆t.

The Bellman equation for this system can then be written as follows,

V (k, t) = max
c

u(c)∆t+ e−ρ∆tE[V (k + ∆k, t+ ∆t)] (3)

in this setting the value function can be thought of as: the value of capital today

is equal to the gain from the utility of consumption over one interval of time (∆t)

plus expected discounted value the agent receives at t + ∆t. The utility function in

(3) is multiplied by the length of our time period as we care about the benefits that

will accrue in that first period relative to its size (Dorfman, 1969). Since our value

function is defined recursively, this expectation captures all future value of capital over

time. In order to get the desired continuous-time value function, we can transform

this discrete version (Dixit, 1992). First, using the power series expansion of e−ρ∆t
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we rewrite this problem. 1

ρ∆tV (k, t) = max
c

u(c)∆t+ (1− ρ∆t)E[V (k + ∆k, t+ ∆t)− V (k, t)] (4)

Next we have to use stochastic calculus to find the value of this expectation. In

stochastic calculus, we need to apply Itô’s lemma in order to properly take the deriva-

tive of a function that depends on a stochastic process. This is necessary because

these processes are continuous everywhere, but due to their volatile nature, they are

nowhere differentiable.

Suppose, for a moment, that we are in a continuous setting with the following

diffusion process,

dXt = µdt+ σdWt

in this setting µ is a drift term, σ is a variance term, and dWt is the increment of a

Wiener process. If we have a function f(Xt, t) that depends on Xt and time t, we

cannot take its derivative using traditional methods since Xt is nowhere differentiable.

Instead, we must use Itô’s lemma, this will yield

df(Xt, t) =
∂f

∂t
dt+

∂f

∂x
· dXt +

1

2

∂2f

∂x2
· (dXt)

2 +O(dt
3
2 ).

Note, the application of Itô’s lemma is essentially just a Taylor expansion of the

series using particular assumptions about the stochastic nature of the system. A key

assumption of stochastic calculus is at work in the equation above, we assume that all

terms with dtn where n ≥ 3
2

are approximately zero. This will lead to the cancellation

of several terms in the expansion of dX2
t and all of terms in O(dt

3
2 ). After expanding

1The power series expansion of e−ρ∆t = 1− ρ∆t+ ρ∆t2 +O(∆t3). One of the common assump-
tions of stochastic calculus is that terms with including ∆t to the power of 3/2 or higher will be
approximately zero in the limit. Thus, we will approximate e−ρ∆t as 1− ρ∆t.
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terms and rearranging the equation we will be left with,

df(Xt, t) =

(
∂f

∂t
+
∂f

∂x
· µ+

1

2

∂2f

∂x2
· σ2

)
dt+

∂f

∂x
· σdWt.

Now, if we take the expectation of this the last term will drop out since E[dWt] = 0.

Thus, we will be left with

E[df(Xt, t)] =

(
∂f

∂t
+
∂f

∂x
· µ+

1

2

∂2f

∂x2
· σ2

)
dt.

Following a similar set of steps, we can look at the difference in our value function

over time. Approximating dV as V (k + ∆k, t+ ∆t)− V (k, t) we can write this as

V (k + ∆k, t+ ∆t)− V (k, t) = Vt(k, t)∆t+ Vk(k, t)(∆k) +
1

2
Vkk(k, t)(∆k)2,

here we have already dropped out most terms with tn where n ≥ 3
2
. Carrying through

the expectation will the give us the original term from our Bellman equation on the

left hand side.

E[V (k+∆k, t+∆t)−V (k, t)] = Vt(k, t)∆t+Vk(k, t)a(k, c)∆t+
1

2
Vkk(k, t)b(k, c)

2∆t,

the a(k, c) and b(k, c) terms come from the original equation for our capital accumu-

lation process given by equation (2). Plugging our expectation term into our value

function in (4) we get,

ρ∆tV (k, t) = max
c

u(c)∆t+(1−ρ∆t)
(
Vt(k, t)+Vk(k, t)a(k, c)+

1

2
Vkk(k, t)b(k, c)

2
)
∆t.
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Then if we divide by ∆t and take the limit as ∆t→ 0 we get the standard HJB

ρV (k, t) = max
c

u(c) + Vt(k, t) + Vk(k, t)a(k, c) +
1

2
Vkk(k, t)b(k, c)

2.

This HJB equation represents a solution to the given continuous-time maximization

problem,

max
ct

∫ ∞
t=0

e−ρtu(ct)dt.

Often, when we are concerned with infinite-horizon problems the Vt(k, t) term will

be left out of the HJB. This term is assumed to be zero in infinite horizon problems

because as our time dimension becomes infinitely large changes in our value function

over (the already infinitely small) increments of time become negligible.

Additionally, in this setting, we might care about the distribution of our state

variable k, g(k, t). This distribution is particularly of interest in a setting with het-

erogeneous agents because heterogeneity and idiosyncratic shocks will impact the

evolution of this distribution over time. We can find this distribution using the

Kolmogorov Forward Equation (KF), sometimes called the Fokker-Planck Equation.

Given an initial distribution g0(k) the distribution g(k, t) satisfies,

∂g(k, t)

∂t
= − ∂

∂k
[a(k, c)g(k, t)] +

1

2

∂2

∂k2
[b(k, c)2g(k, t)].

If a stationary distribution for g(k) exists, it satisfies the ordinary differential equation

(ODE)

0 = − ∂

∂k
[a(k, c)g(k)] +

1

2

∂2

∂k2
[b(k, c)2g(k)].

In a model with multiple agents, the KF equation is one of the key equations that

describe the system. In an Aiyagari model, for instance, the KF will determine prices

10



and market clearing, since market clearing is dependent on the distribution of the

agents and their preferences. The KF equation is an important feature in stochastic

continuous-time literature; however, it is not used in the representative agent setting

present in the rest of this paper. For more information on the derivation and key

concepts of the KF equation see the appendix.

Another way to view the KF equation is as the continuous time analog to the

multiplication of transition matrices (in a Markovian setting). The time-dependent

version of this equation describes the evolution of the probability density function

of the key variables under the influence of deterministic and random forces found in

diffusion processes. The continuous probability distributions that come from our KF

equation are one of the most attractive features of continuous time modeling. Since

often with modern policies, we care most about the distribution of goods, wealth, or

assets.

Now, that we have explored both the HJB and KF equations it is important to

note that the HJB equation is closely related to the maximized Hamiltonian, this is

easily shown. First, if we have the system defined in this section with b(k, c) = 0 our

Hamiltonian is

H(kt, ct, λt) = u(ct) + λta(kt, ct),

while our HJB equation is

ρV (k) = max
c

u(c) + V ′(k)a(kt, ct).

Connecting the two we see λt = V ′(k), i.e. the shadow price of k is equivalent to the

marginal value of k. Thus we can rewrite the HJB as

ρV (k) = max
c

H(k, c, V ′(k))
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where,

H(k, V ′(k)) = u(c) + V ′(k)a(k, c).

The HJB and KF equations, though compact and simple in appearance, can be

used to solve complex economic and financial problems. Closed form solutions to

these problems are often impossible to calculate by hand, but with new computational

developments finding solutions to these systems has become more plausible and these

solution methods show some advantages to long-popular discrete models.

Not only is continuous time modeling is more intuitive, but it also provides more

information about the distribution of parameters with convenience. This comes from

the KF equation that summarizes the distribution of parameters, using the distribu-

tion from this equation researchers can analyze the distribution of a variable over time

or after a shock. The distribution that solves the KF equation can also be used for

estimating model parameters and can provide a likelihood estimator for the model.

Additionally, the algorithms for solving continuous time systems are fast due to the

sparsity of the matrices that determine the evolution of the system.

These modern advances have made continuous time modeling more attractive to

economists since solutions to these systems can now be found without a large number

of assumptions. Though these continuous time problems did not have simple solution

methods until more recently, many researchers have explored modeling in a stochastic

continuous time setting.

3 Literature

This paper works to develop learning techniques in stochastic continuous time. There-

fore we blend two distinct kinds of literature together, stochastic continuous time
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modeling and adaptive learning. In this section, we will first review the stochastic

continuous-time literature. Research on these models in economics has been sparse

but spread widely throughout time. For a deeper understanding of this setting and

on why it is becoming more relevant today a historical overview of these modeling

techniques is necessary. Learning literature, on the other hand, has been consistently

studied for a long time. There is a wealth of knowledge on this topic, and we only

examine a small part of this literature that is relevant to our work.

3.1 Stochastic Continuous-Time Literature: A Historic Overview

The stochastic continuous time setting has become increasingly popular in macroe-

conomic modeling. Interest in this framework first arose in the early 1970s with

financial economic models, these early works include Merton (1969), Merton (1971),

and Black & Scholes (1973). In financial economics casting models in continuous

time is particularly intuitive as many financial variables evolve, such as stock prices,

can be observed on very small intervals; making their prices essentially a continuous

variable instead of a discrete one.

Some early works in continuous time financial models include Black & Scholes

(1973), Eaton (1981), Merton (1971), Merton (1969), and Mirrlees (1971). These

papers set up continuous time models and solve them as rigorously as possible without

the aid of modern computational techniques, often by using comparative statics. This

is done because the system of partial differentials that describes equilibrium in this

class of models is often unsolvable unless specific forms for the value function are

assumed. Due to these identification issues, most of the papers mentioned above

focused on solving for the distributional steady state of their models.

Black & Scholes (1973) develops a method for determining fair prices for Euro-
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pean call options. Unlike many economic models, Black & Scholes (1973) is able to

assume several boundary conditions and functional forms that aid in solving their

key partial differential equations. These boundary conditions and functional forms

are such that the HJB is able to be written in the same form as a standard heat

equation. Once getting the HJB problem into this format is easily solve for using

Fourier transformations. Most optimization problems in this setting cannot be solved

for explicitly like the Black-Scholes problem. Part of the reason why this is possible

to solve the Black-Scholes model is that it is defined specifically for European call

options that can only be called at the end of their lifespan.

Eaton (1981) explores the effects of fiscal policies on the composition of portfolios

and the accumulation of capital. This model defines the net output, government

expenditure, and tax revenue as stochastic processes. All of these processes depend on

aggregate capital stock, which allows the government in this model to tax the random

component of capital income at a different rate than the deterministic part and defines

government expenditure to be depend differently on the deterministic and random

parts of capital. After setting up this model the author uses comparative statics

and some simplifying assumptions to conclude that fiscal policy changes impact the

average yield and riskiness of capital relative to government debt.

Robert Merton has several papers from this period that develop models in stochas-

tic continuous-time. Merton (1969) develops a model for optimal portfolio selection

where the agents’ income is generated by returns on assets. Merton (1971) further

examines this problem and uses explicit forms for the utility function to derive op-

timal consumption and portfolio rules. This paper also uses comparative statics to

examine the response of these rules to certain parameter changes, a popular technique

during this time. Merton (1975b) examines common economics growth models in this

setting. The model discusses in Merton (1975b) is a one-sector neoclassical growth
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model where the size of the labor force evolves according to a stochastic process. The

paper then takes the neoclassical growth model and expands it into a stochastic Ram-

sey problem. Merton (1975b) is one of the first publications that use more traditional

economic modeling in this stochastic continuous time setting. Another paper that

implements traditional economic models is Brock & Mirman (1972).

Brock & Mirman (1972) differs from these other papers because in this model a

solvable steady state exists. This growth model is special due to the linearity of the

consumption function, this allows for the steady state of the stochastic model to be

equal to the steady state of the non-stochastic model. Due to the tractability of this

model the Brock-Mirman model is one of the most common stochastic continuous

models used prior to the introduction of more advanced computational methods.

Dixit (1989) models firm entry and exit decisions where output price follows a

geometric Brownian motion. The model in this paper is solved by simplifying the

system of PDEs into a simpler system of ordinary differentials. This produces a

solution that consists of trigger prices for firm entry and exit. Prices in between the

entry trigger and the exit trigger price produce “hysteresis” which appears in the

model even with small sunk costs.

During the late 1990s and early 2000s a number of books were published on contin-

uous time models in financial economics; these include Merton (1992), Dixit (1992),

Dixit & Pindyck (1994), and Stokey (2009). The publication of these works formalized

the use of continuous time models, particularly in finance. Merton (1992) contains

several of Merton’s papers mentioned earlier in this literature review and is directed

at finance graduate students. Dixit & Pindyck (1994) is also targeted at finance

graduate students and contains some of the most intuitive derivations of the HJB

equation out of all economics and finance literature. Dixit (1992) contains intuitive

mathematical introductions and focuses on how to implement boundary conditions
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in the stochastic continuous time setting. Stokey (2009), differs from the other books

on stochastic continuous time modeling. This book focuses more on the mathemat-

ical background and measure theory that is necessary for a deeper understanding of

this material. The main contribution of this work is the understanding that contin-

uous time modeling better captures the dynamics of inaction and boundaries that

are rarely binding. This setting’s ability to capture inaction and boundary condi-

tions is the reason why stochastic continuous time modeling has become so popular

in financial economics.

With the availability of better computational methods more econometric papers

have been written on stochastic continuous time models. Hansen & Scheinkman

(1995) derive moment conditions for estimating and testing continuous-time Markov

models using discrete time data. Aı̈t-Sahalia has a number of economics and finance

papers published throughout the 1990s and early 2000s on econometric tests for dif-

fusion processes. Aı̈t-Sahalia (2002) constructs a maximum-likelihood approach to

estimating parameters in discretely sampled diffusion models. Aı̈t-Sahalia (2004) fur-

thers the methods from Aı̈t-Sahalia (2002) and constructs an approach to estimating

parameters in these models when the sampling intervals are not uniform. Posch (2009)

solves continuous time dynamic stochastic general equilibrium models with jumps and

shows how the continuous time setting can make it simpler to estimate the likelihood

function. This paper solves the model by introducing several simplifying assumptions

and confirming the results with Monte Carlo estimates.

Most stochastic continuous time modeling in the early 2000s was done using as-

sumptions about the form of the value function or by imposing multiple boundary

conditions. Financial economists such as Sannikov extended stochastic continuous

time modeling to a microeconomic setting. In Sannikov (2008) and DeMarzo & San-

nikov (2006) a principal-agent setting is developed in continuous-time. Solutions to
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these principal agents are found by implementing several boundary constraints, which

at the time of their publication was an innovative technique. This technique opened

up the door for more publications in the stochastic continuous time setting.

Hansen et al. (2006) takes a more theoretical approach to stochastic continuous

time modeling and explores model misspecification in this setting. Duffie & Epstein

(1992) develops a stochastic differential formulation of recursive utility. Gabaix (2009)

has a section on continuous time approaches to power laws. In this paper, the size

of an economic unit (cities or firms) is modeled as a stochastic process that can hit

reflective boundaries at some points. Using this process one can use the KF equation

to describe the evolution of this distribution using power laws a unique solution to

this system can be found.

Prior to 2015 economists were not widely implementing computational methods

to find solutions to this class of optimization problems. However, Forsyth & Labahn

(2007), a computational finance paper, studies numerical methods for solving HJB

equations in finance. This paper finds that discretizing the HJB and solving it nu-

merically will converge to the viscosity solution. The viscosity solution is the same

solution that economists began focusing on around 2015. Viscosity solutions are con-

tinuous and differentiable solutions to the HJB that are in most cases unique. Forsyth

& Labahn (2007) also analyzes Newton-type iterations schemes and finds that these

also solve the HJB equation, another result economists realized later.

With the rise of heterogeneity in macroeconomics, economic models have devel-

oped new more complexity. Discrete time models can capture rich heterogeneity;

however, these methods are time-consuming and cannot provide the same level infor-

mation about the distribution of key variables as continuous time models. To solve

these new richer models economists have developed more advanced solution tech-

niques many recent papers have been focused on developing and implementing these
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algorithms.

Achdou et al. (2014) uses tools from applied mathematics to solve the HJB

equation. The algorithm outlined in the paper uses finite difference methods to

solve for an approximate solution to the HJB. This approximate solution, called

the viscosity solution, assumes that the value function is differentiable on its entire

domain. Viscosity solutions are unique given that several weak conditions hold. In

Achdou et al. (2014) this method allows the authors to find both steady-state and

time-dependent solutions for their models. Other papers such as Kaplan et al. (2018),

Achdou et al. (Working), and Parra-Alvarez et al. (Working) implement the same

techniques. This paper uses the steady state solution methods presented in Achdou

et al. (2014) in the exogenous learning rule model.

A key issue with the solution methods presented in Achdou et al. (2014) is that

the time-dependent solutions cannot be used in conjunction with random aggregate

shocks. Ahn et al. (2018) uses the foundation developed in Achdou et al. (Working)

to create a more complicated algorithm for analyzing models with heterogeneous

agents that are subject to shocks. This algorithm calculates the steady-state versions

of the HJB and KF equations and then linearizes the system around that steady

state without aggregate shocks. Linearization around this steady state involves using

a first order Taylor expansion since this system has a large number of variables the

derivatives needed for this Taylor expansion cannot be taken by hand and must be

calculated using automatic differentiation.

After the system is linearized it can be easily solved and the Schur decomposition

of the coefficient matrix can be used to check for stable roots. Using this algorithm

one can look at impulse response functions and the effects of shocks on a continuous

model. The algorithm in this paper is an important innovation as previous solution

methods prevented researchers from analyzing random macroeconomic shocks. Being
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unable to analyze these types of shocks was a drawback of stochastic continuous time

modeling in macroeconomics. Now that a simple portable algorithm for analyzing

these types of models exists the stochastic continuous time setting is likely to become

increasingly popular among researchers in theoretical macroeconomics.

The representative agent model outlined in this paper will use the same approach

as Ahn et al. (2018) to solve the model and to implement learning in this framework.

3.2 Learning Literature

The motivation of this paper is to develop adaptive learning techniques in the stochas-

tic continuous-time setting. Adaptive learning is a statistical approach that overcomes

the strict model assumptions implied by traditional rational expectations. In learning

models, agents use statistical techniques to estimate model parameters and update

their expectations of parameters and other values over time. Most learning papers

involve direct feedback from the agents’ estimates through a special mapping called

a T-map. This paper relies on exogenous learning rules that appear similar to sim-

ple econometric learning as described in Evans & Honkapohja (2001); however, the

algorithms in section five do not have this feedback rule. Instead, the learning in

this paper comes from simple information drops and all new information is used to

directly update parameter estimates.

This method of learning is more similar to the early works in this literature.

For instance, Bray (1982) looks at a more simple version of updating estimates via

OLS. Some of the models explored in this paper do not look directly at feedback

rules and instead focus on seeing if agents can get rational expectations estimates

of parameters when presented with additional information. The agents do this by

implementing OLS each period with updated information. This paper found that
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under some assumptions the OLS learning converged to the rational expectations

equilibrium’s values. Also, learning in this paper focuses on learning parameters in

a steady-state setting. Similar environments have explored previously work, notable

steady learning as mentioned in Evans & Honkapohja (2009).

There does exist some literature similar to stochastic continuous-time adaptive

learning in asset pricing literature. Veronesi (2019) examines a Bayesian learning

rule in an asset pricing model with heterogeneous risk preferences. Some other papers

such as Bhamra & Uppal (2014), also discuss implementing a similar learning rule.

The work in these papers is distinctly different than what we will proceed with, since

the focus of these works is finding parameters based on distributions.

In this paper, one of the main focuses in our learning section is adapting mis-

specification. There has been some work on this within asset pricing literature,

notably Hansen & Sargent (2019b) and Hansen & Sargent (2019a). These papers

look at misspecification within models and also look at an agent’s choice between

several well-defined models. All of these asset pricing models are cast in stochas-

tic continuous-time. This is done in order to exploit the convenient properties of

Brownian motion and continuous likelihood functions.

4 A Representative Agent Model

In this section, we develop discrete and continuous models in deterministic and

stochastic settings to better understand the connects between discrete and contin-

uous models. This is done with a few simple Ramsey models. We first develop the

discrete and continuous models separately before comparing them closely. One im-

portant feature of the discrete methods is the inclusion of time increments ∆t, which

allows us to compare our discrete and continuous models. The use of ∆t in the fol-
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lowing sections is based on previous work by Dorfman (1969). Doing this allows us

to better understand the similarities of discrete and continuous time systems, and

creates a discrete setting to develop a benchmark for how learning should impact a

system with infinitely small time intervals. This section of the paper proceeds by

first developing deterministic and stochastic versions of a model in discrete and con-

tinuous time. Next, we will compare these models and show how they are related

as increments of time get infinitely small. In both of the cases outlined below the

discrete model limits to the continuous version.

4.1 A Deterministic Model

Before worrying about systems with stochasticity, we first outline a simple Ramsey

model in a deterministic setting. First, we will describe the discrete case and the

continuous case separately. Then, we will compare the two models.

4.1.1 The Discrete-Time Deterministic Model

Discrete time models in economic often assume that ∆t = 1, this assumption makes

models less notationally bulky. However, in doing so information is lost, the utility

functions used in economics are utility per unit time and our discrete discount factor

is dependent on units of time as well. The model outlined below takes these units of

time into consideration, and carefully examines the optimality conditions with this

∆t term.

Before describing the model it is important to understand the discount factor’s

dependence on time. The discount factor β is defined as the discount rate per unit of

time and can be written as a function of the increment of time β(∆t). Furthermore,

lim
∆t→0

[β(∆t)]t = e−ρt.
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Using this discount factor we can proceed with our model. A representative agent

in this setting will maximize utility per unit time according to

max
ct

E0

∞∑
t=0

b 1
∆t
c∑

n=0

βt+n∆tu(ct+n∆t)∆t, (5)

here b 1
∆t
c limits n to integer values, since ∆t ≤ 1. In this setting, capital evolves

according to the following process2

kt+∆t = (eztf(kt)− δkt − ct)∆t+ kt (6)

where f(kt) = kαt .3 In this deterministic setting we will have the following process

for the evolution of productivity zt,
4

zt+∆t = (1− η∆t)zt (8)

This model is closely related to the stochastic continuous model outlined later in this

section. We can note that ∆t becomes dt in the limit, using this the equations (5)-(8)

will be equivalent to the ones used for the continuous deterministic model.

Optimization problems in this setting can take several different forms. First, we

2Setting

k̇ =
kt+∆t − kt

∆t
= eztf(kt)− δkt − ct

(6) is the typical equation for the evolution of capital in a discrete Ramsey model
3In this discrete model if we normalize ∆t = 1, (6) is the standard equation for capital accumu-

lation.
kt+1 = eztf(kt) + (1− δ)kt − ct

4In a stochastic setting productivity zt will evolve according to the following AR(1) process. This
process was derived from the standard Ornstein-Uhlenbeck process in (30) using the Euler-Maruyama
method

zt+∆t = (1− η∆t)zt + σεt
√

∆t (7)

Here εt ∼ N(0, 1).
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can write out the Lagrangian.

L (z0, c0, λ0) = E0

∞∑
t=0

b 1
∆t
c∑

n=0

βt+n∆t{u(ct+n∆t)∆t

+ λt+n∆t[kt+n∆t + (eztf(kt+n∆t)− δkt+n∆t − ct+n∆t)∆t− kt+(n+1)∆t]}

In this setting our first order conditions will be the following,

∂L

∂ct
=
∂u

∂c
∆t− λt∆t = 0 (9)

∂L

∂kt+∆t

= βt+∆tEtλt+∆t

[(
eztf ′(kt+∆t)− δ

)
∆t+ 1

]
− βtλt = 0 (10)

∂L

∂λt
= kt + (eztf(kt)− δkt − ct)∆t− kt+∆t = 0 (11)

where we have supposed that λt+∆t = λt + λ̇∆t, where λ̇ is that rate at which it will

change over our interval of time. Since this setting is deterministic we can now drop

the expectation term. Then we can rewrite (10).

∂L

∂kt+∆t

= λt[e
ztf ′(kt+∆t)− δ] = −λt ln β − λ̇ (12)

For a full derivation of (12) see the appendix.

We can look at this problem in from a Hamiltonian framework. In this setting

the current value Hamiltonian is,

J(kt, µt+∆t, ct, t, t+ ∆t) = u(ct) + µt+∆t(e
ztf(kt)− δkt − ct) + γt+∆t

(
− ηzt∆t

)
(13)

with the transversality condition

lim
t→∞

βtµtkt ≤ 0. (14)
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The first order conditions for this system are given by the following equations,

∂J

∂ct
= u′(ct)− µt+∆t = 0 (15)

∂J

∂kt
= µt+∆t(e

ztf ′(kt)− δ) = −µt+∆t − µt
∆t

− ln(β)µt+∆t (16)

in this setting µt+∆t−µt
∆t

= µ̇t. At a glance (16), looks very similar to (12). Using (15)

and (16) we can get the typical first order conditions for a Hamiltonian system,

(
eztf ′(kt)− δ + ln(β)

)
= −u

′′(ct)

u′(ct)
ċt.

This is similar to the continuous time version; however, the multiplier in this case

is incremented forward one unit of time, and our discrete discount rate causes our

first order conditions to include a ln(β) term. As the increment of time approaches

zero, the discrete Hamiltonian outlined here will be equivalent to the continuous

Hamiltonian outlined in the following section.

We can also write a discrete Bellman equation for this system

V (zt, kt) = max
ct

u(ct)∆t+ β∆t[V (zt+∆t, kt+∆t)]. (17)

This setting will have similar first conditions. First we can take the first order condi-

tion of this system with respect to ct

∂u

∂ct
∆t+ β∆t ∂

∂ct
V (zt+∆t, kt+∆t, t+ ∆t) = 0. (18)

In this case ∂
∂ct
V (kt+∆t, zt+∆t, t+ ∆t) = ∂V (·)

∂kt+∆t

∂kt+∆t

∂ct
. Thus, we will have

∂u

∂ct
∆t = β∆t ∂V (·)

∂kt+∆t

∂kt+∆t

∂ct
∆t.
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Simplifying and denoting the marginal value of capital at time t as µt = ∂
∂k
V (k, t) we

will have the following equation

∂u

∂ct
= β∆tµt+∆t

∂kt+∆t

∂ct
,

this is equivalent to (15). Taking the first order condition with respect to k will then

yield,

µt = [1 +
(
eztf ′(kt)− δ

)
∆t](µt+∆t)β

∆t

Simplifying this will give us (16) from our discrete Hamiltonian. Examining this we

can see that the value function and Hamiltonian are closely related as in Dorfman

(1969).

4.1.2 The Continuous-Time Deterministic Model

The continuous time version of this model can be described according to the following

equations. Our agent will maximize expected utility according to the following equa-

tion, here e−ρt will be the continuous time equivalent of the discrete discount factor

βt,

max
ct

E0

∫ ∞
t=0

e−ρtu(ct)dt. (19)

This is setting capital will evolve according to the following process

dkt = (eztf(kt)− δkt − ct)dt, (20)

where the production function is the same as before. Productivity will evolve accord-

ing to

dzt = −ηztdt, (21)
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the continuous time analog to the discrete process in the previous section.

In this setting, the current value Hamiltonian can be rewritten as follows,

H(kt, zt, ct, γt, µt, t) = u(ct) + µt(e
ztf(kt)− δkt − ct)− γt(ηzt).

It is clear that H(·) = lim
∆t→0

J(·), thus this directly related to our discrete time problem.

The first order conditions for this system will be given by the following equations.

∂H

∂kt
= µt(e

ztf ′(kt)− δ) = −dµt
dt

+ ρµt (22)

∂H

∂ct
= u′(ct)− µt = 0 (23)

The transversality condition in continuous time can be written as follows.

lim
t→∞

e−ρtµtkt ≤ 0

Together the first order conditions (22) and (23) imply,

u′(ct)(e
ztf ′(kt)− δ − ρ) = −dµt

dt

We can also write a HJB for this system, since we are in a continuous time setting.

ρV (k, z) = max
c

u(c) + ∂kV (k, z)(ezf(k)− δk − c)− ∂zV (k, z)(ηz) (24)

Setting µt in the current value Hamiltonian equal to ∂kV (k, z), and γt equal to

∂zV (k, z) we can rewrite this again.

ρV (k, z) = max
c

H
(
k, z, c, ∂kV (k, z), ∂zV (k, z)

)
(25)
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4.1.3 Comparing the Deterministic Models

For a clear comparison of the discrete and continuous time models outline in this

section, we can examine the discrete Bellman equation (17) as ∆t→ 0. First, we can

take an approximation of V (kt+∆t, zt+∆t), in a method similar to Dorfman (1969).

V (kt+∆t, zt+∆t) = V (kt, zt)+∂kV (kt, zt)(kt+∆t−kt)+∂zV (kt, zt)(zt+∆t−zt)+O
(
∆t

3
2

)
All other partials and cross partial derivatives will be in the O term. These terms

will all be approximately zero in the limit as ∆t → 0. Next, we will approximate

β∆t ≈ e−ρ∆t ≈ (1 − ρ∆t). Using these two approximations we can rewrite (17) as

follows.

V (kt, zt) = max
ct

u(ct)+(1−ρ∆t)[V (kt, zt)+∂kV (kt, zt)(kt+∆t−kt)+∂zV (kt, zt)(zt+∆t−zt)]

Simplifying and substituting in for the changes in k and z, this will yield

ρV (k, z) = max
c

u(c) + ∂kV (k, z)(ezf(k)− δk − c)− ∂zV (k, z)(ηz). (26)

This is the same equation as the HJB derived earlier in this section (24). In the deter-

ministic system comparing the HJB and the Bellman equation is more simple, since

we do not need to worry about expectation terms. This is because the deterministic

version of this model does not have uncertainty, adding in a continuous time version

of our process in (7) will give us a more complicated optimization problem.
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4.2 A Stochastic Model

Now, we build a stochastic model in discrete and continuous time. Adding in stochas-

ticity will yield more complex models and additional terms in the HJB equation.

These stochastic models are more common in literature and are closely related to the

Ramsey models used later in this paper.

4.2.1 The Discrete-Time Stochastic Model

This model will be a stochastic version of the discrete time model defined previously.

In this setting agents will maximize utility according to (5) and capital will evolve ac-

cording to (6) with the same Cobb-Douglas production function. The main difference

between this model and the previous deterministic model is that zt evolves according

to the following AR(1) process,

zt+∆t = (1− η∆t)zt + σεt
√

∆t, (27)

where εt ∼ N(0, 1). This model is closely related to the stochastic continuous model

outlined later in this section.

Optimization problems in this setting can take several different forms. The current

value Hamilton for this problem is,

J(kt, µt+∆t, ct, t, t+ ∆t) = u(ct) +µt+∆t(e
ztf(kt)− δkt− ct) + γt+∆t

(
− ηzt +σεt

√
∆t
)
.

(28)

The transversality condition will be the same as in the discrete deterministic model

(14). Despite the presence of an additional term, the first order conditions for this

system will be the same as the ones from the discrete deterministic model. Also as

the increment of time approaches zero, the discrete Hamiltonian outlined here will be
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equivalent to the continuous Hamiltonian outlined in the following section.

We can also write the discrete Bellman equation for this system

V (kt, zt) = max
ct

u(ct)∆t+ β∆tE[V (zt+∆t, kt+∆t)]. (29)

This setting will have similar first conditions to the discrete model previously studied.

4.2.2 The Continuous-Time Stochastic Model

One of the key differences between the continuous-time model in this section and the

one previously outlined is the process for productivity. Productivity in the continuous

time setting will evolve according to the following Ornstein-Uhlenbeck process, the

continuous-time analog of (27).

dzt = −ηztdt+ σdWt (30)

Where dWt is the increment of the Wiener process.

Equilibrium in the continuous time setting is given by the following equations.

First, equilibrium will depend on the HJB equation (31), the continuous time analog

of the Bellman equation. We can first write this equation in a form similar to (17).

V (k, z) = max
ct

u(ct) + e−ρtE[V (k′, z′)]

The expectation term in this model will differ from the expectations in (17). This

is because the Wiener process in (30) is continuous, but is nowhere differentiable

making it impossible to treat this expectation like a normal Riemann integral. Using
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stochastic calculus to solve for this expectation will yield the following HJB equation.

ρV (k, z) = max
c

u(c)+∂kV (k, z)(eztf(k)−δk−ct)+∂zV (k, z)(−ηzt)+
1

2
∂zzV (k, z)σ2

(31)

Taking the first order condition with respect to consumption for the HJB equation

will give us (32).

u′(ct) = ∂kV (k, z)

This is analogous to (9) in the discrete model or (23) in the deterministic continuous

model. The term setting the µt from the continuous time current value Hamiltonian

(13) equal to ∂kV (k, z) we can rewrite the HJB.

ρV (k, z) = max
c

H
(
k, c, z, ∂kV (k, z), ∂zV (k, z)

)
+

1

2
∂zzV (k, z)σ2 (32)

This equation links the HJBs of our stochastic and non-stochastic continuous time

models.

4.2.3 Comparing the Stochastic Models

Furthermore, we can compare the discrete and continuous stochastic models we have

outlined thus far. If we take the discrete Bellman in (29), we can recast it and make

it more similar to (32). First, we can take an approximation of V (kt+∆t, zt+∆t), in a

method similar to Dorfman (1969).

V (kt+∆t, zt+∆t) = V (kt, zt)+∂kV (kt, zt)dk+∂zV (kt, zt)dz+
1

2
∂zzV (kt, zt)dz

2+O(∆t
3
2 )

All other partials and cross partial derivatives will be in the O term. These terms

will all be approximately zero in the limit as ∆t → 0. Next, we will approximate
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β∆t ≈ e−ρ∆t ≈ (1 − ρ∆t). Using these two approximations we can rewrite (17) as

follows.

V (kt, zt) = max
ct

u(ct) + (1− ρ∆t)[V (kt+∆t, zt+∆t)]

= V (kt, zt) + ∂kV (kt, zt)dk + ∂zV (kt, zt)dz +
1

2
∂zzV (kt, zt)dz

2

Simplifying and taking the limit as ∆t→ 0 we wil be left with the following equation.

ρV (k, z) = max
c

u(c) + ∂kV (k, z)(eztf(k)− δk − c)− ∂zV (k, z)(ηzt) +
1

2
∂zzV (k, z)σ2

Using this derivation we have gotten the stochastic HJB in equation (31). Thus,

we have connected our discrete and continuous models in both deterministic and

continuous settings.

4.3 Results

We have built four closely related models in this section and shown how discrete time

models limit to their continuous time counterparts. With the correct setup, discrete

time models will be the same in the limit as the continuous time models. The model

comparisons in this section have demonstrated clear connections between discrete and

continuous models. These connections are especially clear in the deterministic version

of our models; however, with the use of stochastic calculus, they are easily seen.

Furthermore, in this section, we have recast discrete time models so that they

contain the increment of time, ∆t. This alone is a contribution to current literature

as few economists examine models where ∆t = 1. Within this class of models where

∆t is built into the model, one could explore and compare many models with different

values for ∆t.
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5 Adaptive Learning Rules

Now that we have developed our modeling framework for this paper, we will move on

to examining representative agent exercises in learning. The first group of exercises

will focus on an “stylized” learning rule. In this setting we build models where our

agents have a misperception of the true underlying parameters, then our agents receive

information dumps where they get some insight into the true model parameters. Here

agents are trying to update their parameters to make optimal steady state decisions.

Thus, our system is not time dependent. Our agents do recalculate the model for a

number of periods, but these periods do not correspond to time periods in our model.

Three models will be explored in the following section. The first examines the

stylized learning rule when the unknown model parameter is part of the exogenous

stochastic process. Next, the stylized learning rule is applied to a model with misspec-

ification in an endogenous stochastic process for the evolution of capital stock. Lastly,

we modify the model with a stochastic processes for productivity and implement a

real time updating rule that utilizes recursive least squares, a more meaningful and

realistic approach.

5.1 Learning the Process for Productivity

There is a representative agent that makes consumption choices c and has capital

stock k. The state of the economy depends on the flow of capital stock. The agent

has standard preferences over utility flows based on capital discounted at rate ρ ≥ 0.

This can be written as the following equation:

E0

∫ ∞
t=0

e−ρtu(ct)dt (33)
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Here consumption, ct ≥ 0 for all periods. The agent’s capital stock will evolve ac-

cording to the following stochastic process used in Achdou et al. (2014).

dkt =
(
ztk

α
t − δkt − ct

)
dt (34)

This is the continuous time analog of the typical equation for the evolution of capital

stock. The production function used in this section is Cobb-Douglas, f(kt) = kαt .

Technological progress zt will evolve according to the following equation

d log(zt) = −θ log(zt)dt+ σdWt. (35)

This is a logged version of an Ornstein-Uhlenbeck process, this means that zt will

follow a stationary continuous process that is analogous to an AR(1) process. This

can be rewritten in terms of zt,

dzt =

(
− θ log(zt) +

σ2

2

)
ztdt+ σztdWt. (36)

In this form we can more clearly see the drift for this process will be,
(
− θ log(zt) +

σ2

2

)
zt, and the variance term will be, σzt.

The utility function used throughout this project will have constant relative risk

aversion (CRRA),

u(ct) =
c1−γ
t − 1

1− γ

here the CRRA parameter will be γ and γ > 0.
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5.1.1 Stationary Equilibrium

A stationary equilibrium in this setting is given by the following equations. Our HJB

for this problem is

ρV (k, z) = max
c

u(c) + ∂kV (k, z) ·
(
ztf(k)− δk − c

)
+

+ ∂zV (k, z) ·
(
− θ log(z) +

σ2

2

)
z + ∂zzV (k, z) · 1

2
σ2z2.

The derivation of this HJB can be found in the appendix along with a description of

the algorithm used to solve this value function problem.

The agents in this simple model hold an incorrect belief about the diffusion process

for technological progress. In this setting with exogenous learning, they predict that

the diffusion process is given by the equation below,

d log(zt) = −θg log(zt)dt+ σgdWt

There are two parameters that the agent misspecifies in this setting, σ and θ. These

misspecifications could be modeled a number of different ways, but in this section,

we have selected misspecified values of θ and σ that move the drift of the zt in the

same direction. The results from other specifications are shown in the appendix. In

the results presented in this section, the agent initially believes that θ is larger than

the true value and that σ is smaller than the true value. Specifically, in period one,

θg = 0.25 while θ = 0.105 and σ2
g = 0.008 when σ2 = 0.015.

To test how a learning process could evolve in this environment we first intro-

duce an exogenous learning process. Since the process is exogenous, the agents will

repeatedly solve the steady state of the HJB with different amounts of information

at each period. In each one of these periods, there is a chance that the agents will
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have a chance to gain more information in the form of noisy observations of the true

parameter values. In this model these noisy observations will be of the form,

θ̃i = θ + εi,θ, εθ ∼ N(0, 0.1) (37)

σ̃2
i = σ2 + εi,σ, εσ ∼ N(0, 0.01) (38)

The information will be given to an agent based on a draw from a standard Bernoulli

distribution, and the agents will update their estimate of both parameters using the

following equations

θg,i+1 = θg,i + 0.01(θ̃i − θg,i),

σ2
g,i+1 = σ2

g,i + 0.01(σ̃2
i − σ2

g,i).

In this problem θ and σ are the true values of the parameters, and i is an index for

the updating period. These parameters are updated according to the algorithm above

and then used to calculate the steady state of our system, this steady state algorithm

is described in the appendix (Achdou et al. , 2014).

5.1.2 Productivity Process Results

Below are the convergence results for the stylized learning rule in this setting. The

following figure displays the value function over z and k. Looking at the convergence

in the value function over z for a median value of k we can see clear convergence,

here our value function starts off flat and develops the correct slope and curvature

as our updating procedure continues. However, after 1, 000 periods we are still some

distance from the true value function. Convergence over k for a median value of

z is less interesting. In this case there is appropriate convergence; however, the
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difference between the misspecification and the true value is much smaller than in

the z dimension.

(a) (b)

The misspecified parameters, θ and σ, converge as we would thought. Below is a

graph of the values of σ and θ at each period, including those in which the system

does not update.

(a) (b)

This exercise displays the type of convergence we would have predicted.. Thus,

we expect that learning rules would perform in a predictable manner in a stochastic

continuous time setting.
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5.2 Learning the Process for Capital

After examining the stylized learning rule’s impacts on a model with a misspecified

exogenous process, we investigate a model with a misspecified endogenous process.

In this model, we have a diffusion process that summarizes the evolution of capital

stock. Misspecification in this diffusion process impacts optimal savings and therefore

the optimal consumption choice in the model. Thus, an incorrect specification of this

process directly impacts our equilibrium choices. Furthermore, a poor consumption

choice directly impacts the drift term in our diffusion process.

In our endogenous process model, there is a representative agent that makes con-

sumption choices c and has capital stock k. The state of the economy depends on the

flow of capital stock. The agent has standard preferences over utility flows based on

capital discounted at rate ρ ≥ 0. This can be written as the following equation:

E0

∫ ∞
t=0

e−ρtu(ct)dt

Here consumption, ct ≥ 0 for all periods. The agent’s capital stock will evolve ac-

cording to the following stochastic process used in Merton (1975a). This change has

been made so that we can model learning with stochastic process capital. The earlier

specification where our stochasticity came from zt is more common in the literature.

In this setting, capital will follow the stochastic process

dkt =
(
f(kt)− (δ + n− σ2)kt − ct

)
dt+ σktdWt.

Here n measures the growth of the work force and dWt is the increment of a Wiener

process. In this setting, f(kt) − (δ + σ2)kt − ct summarizes the drift of capital and

σkt describes the variance.
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5.2.1 Stationary Equilibrium

Stationary equilibrium in this setting will be given by several equations. The HJB

for this problem will be

ρV (k) = max
c

u(c) + V ′(k) ·
(
f(k)− (δ + n− σ2)k − c

)
+

1

2
V ′′(k) · (σk).

The derivation of the HJB can be found in the appendix. This system will be defined

on (k̄,∞) where k̄ is the value of capital at which the agent would consume nothing.

The agents in this simple model hold an incorrect belief about the diffusion pro-

cess for capital stock. In this setting with exogenous learning they predict that the

diffusion process is given by equation (39).

dkt =
(
f(kt)− (δ + n− σ2

g)kt − ct
)
dt+ σgktdWt

In this model the agent believes that the parameter σ is smaller than it should

be, σg < σ. Specifically, σg = 0.02 when the true value σ = 0.5. With this misspec-

ification, the agent believes the drift is larger than it should be and the variance is

smaller than the true variance of the process. Other misspecifications for this process

were examined, these results are in the appendix.

To test how a learning process could evolve in this environment we first introduce

a stylized learning process. Since the information gain is exogenous the agents will

repeatedly solve the steady state of the HJB with different amounts of information

at each period. In each one of these periods, there is a chance that the agents will

have a chance to gain more information in the form of a noisy observation of the true
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parameter estimate. The noisy parameter estimate will take the form,

σ̃i = σ + εi, εi ∼ N(0, 0.1). (39)

The information will be given to the agent based on draw from a standard Bernoulli

distribution and the agents will update their estimate of σg according to

σg,i+1 = σg,i + 0.01(σ̃i − σg,i).

Here i is the index for the updating period and this updating process will continue

for 1,000 periods.

5.2.2 Capital Process Results

Below are several results, the figures on the left show all the output from all 1,000

iterations of the endogenous learning algorithm. Figures to the right display select

output from different periods of the iteration.

(a) (b)

Using the learning rule, the value function converges to the true estimate over

time. In this setting convergence is slow and even after 1,000 periods, the value

function is still a small distance from the true value. Convergence is equally slow for
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some measures such as savings.

(a) (b)

From these figures, we can see that the savings policies appear to converge more

quickly to the true policy than the value functions converge to the true steady state

estimates. This is likely due to the fact that optimal savings policies don’t depend

as strongly on the parameter σ. While σ does impact the calculations of the savings

policies it is only one part of savings decision. This parameter impacts the value func-

tion more directly since it will affect the evolution of the system and the algorithm’s

choice of implementing a forward difference or backward difference for calculating the

derivative of the value function.

Our prediction of σ converges in an expected way. We can see this in the graph

below, which verifies that our updating rule works as expected. After 1,000 iterations

the guess for σ is 0.005 away from the true parameter value, this is why our value

functions and optimal savings policies have not completely converged to their true

values.
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Figure 5

5.3 Learning Using Real-Time Updating

In this next section, we will explore a modified model with a stochastic process for

productivity. In this model, agents will observe the process over time and update

their parameter estimates based on these observations. Agents will maximize utility

according to

E0

∫ ∞
t=0

e−ρtu(ct)dt.

Here productivity will evolve according to the same process as before, (35). Pro-

duction will still be a standard Cobb-Douglas function used in previous sections.

This means that log(zt) is evolving according to an Ornstein-Uhlenbeck process, the

continuous-time analog of an AR(1) process. Defining the process for zt this way

avoids negative values for zt. Looking more closely at the log(zt) process we have

figure 6.
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Figure 6

This process does have negative values, but the process for zt will not.

5.3.1 Real Time Updating of Parameter Estimates

The HJB for this stochastic Ramsey model will be

ρV (k, z) = max
c

u(c) + ∂kV (k, z) ·
(
zf(k)− δk − c

)
+

∂zV (k, z) ·
(
− θ log(z) +

σ2

2zt

)
+ ∂zzV (k, z) · 1

2
σ2z2,

in this setting our parameter for σ will be set equal to one. Setting σ = 1 will not only

simplify our updating problem, but it will also allow for a more intuitive connection

between our Ornstein-Uhlenbeck process and an AR(1) process.

In this model, agents believe that the stochastic process for productivity evolves

according to

d log(zt) = −θg log(zt)dt+ dWt.

Where θg is the agent’s forecast for the process’s parameter θ. Before the agents in
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this model begin trying to solve their value function problem, they look at the first

100 observations of the process and using ordinary least squares (OLS) predict a value

for θ and a possible constant.

In this setting, the agent can use OLS to predict an initial value for θg, since

the process for log(zt) can be rewritten as a discrete AR(1) process using the Euler-

Maruyama method. Applying this method the AR(1) process for log(zt) will be,

log(zt+∆t) = (1− θg∆t) log(zt) + εt
√

∆t

for simplicity we will assume that the agent estimates these parameters as if ∆t is

observable.

Next, they use the finite difference algorithm described in the appendix. They

implement this algorithm 10,000 times, each time they observe several additional

values of the productivity process. Therefore, in this setting, we should think of

the updating periods as independent intervals of time that each contains several

observations. Next, using recursive least squares (RLS), the agent updates their

parameter estimates. This RLS formula is given by,

Rg,t+1 = Rg,t + γt(xx
′∆t−Rg,t)

φg,t+1 = φg,t + γtR
−1
g,t+1 · x(y − x′φg,t)∆t

here all variables with a g subscripts represent the agent’s forecast x and y are matrices

that contain value of xt and yt for all points between t−1 to t and t to t+1 respectively.

The number of points in each of these intervals will depend on dt. In the results below

the agent observes 5 points of the process in each updating period, this means that

after 100 periods the agent has 500 new points on which to base their estimates. This
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has been done in order to maintain continuity in the time dimension. Additionally,

xt and φg,t are defined as

xt =

 1

log(zt)

 , φg,t =

 cg,t

1− θg,t∆t

 ,
where cg,t is our estimate for a constant in the model. The agent uses this formula

to update parameter estimates and then reruns the finite difference algorithm, this is

done 10, 000 times.

5.3.2 Real Time Updating Results

Some of the results from the forecasting model resemble the results from previous

sections. In this setting, value functions converge quickly in the k dimension and

more slowly in the z dimension. This is in line with the results from before and

makes sense as the misspecification is for the process that governs z.

First, we will look at results for an algorithm where the gain γt = 1
t
, this means

that the agent discounts the information in each updating period by 1
t
. Here t repre-

sents the updating period that the agent is in.

(a) (b)

Figure 7
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We can take a closer look at convergence in this setting by examining our param-

eter estimates over time.

(a) (b)

Figure 8

Looking at the results above we can see that convergence in this setting is fast.

Despite starting from incorrect parameter values, θ and the constant are close to their

true parameter values after 200 periods.

We can also examine this real-time updating rule with a constant gain. Here we

set the gain γt = 0.01 for all time periods. The value functions converge similarly to

the decreasing gain case as seen below.

(a) (b)

Figure 9

We can again examine the convergence of θg and the estimate for the constant
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over time.

(a) (b)

Figure 10

Since, we are using a constant gain algorithm there is noise in our parameter

estimates even after many periods. Constant gain algorithms place equal emphasis

on all observed points from the Ornstein-Uhlenbeck process, since this is a noisy

process we will see our estimates trend about the correct parameter value instead of

directly to the correct value. Due to this, it is helpful to examine the mean estimates

of θ and the constant over time.

(a) (b)

Figure 11

Here the mean estimates of θ and the constant are approaching the true parameter

values.
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5.4 Summary

Our exogenous learning rules perform well in the stochastic continuous-time steady

state calculations. This is encouraging because it means that we can expect some

of the familiar results from discrete time learning to carry over in our continuous

setting. Although the results in this section are not particularly stunning there are

several extensions to this simple learning rule that may yield more interesting results.

Looking at this exogenous learning rule in a heterogeneous agent setting may allow for

more feedback through the system KF equation, thus yielding less predictable results.

A heterogeneous agent model creates this additional feedback through internal pricing

frictions that do not exist in our representative agent model.

The performance of the forecasting rule demonstrates that using adaptive learning

techniques over intervals of time works well. This method may be beneficial for future

work, as it provides a clear link between discrete RLS methods and the continuous-

time framework. Despite using different methodology it appears that the forecasting

rule in section 5.3 and the exogenous learning rule in section 5.1 have similar conver-

gence results, this is an interesting result that may be due to the model similarities

in these sections.

6 Conclusion

This paper serves a primer on continuous-time modeling and adapting discrete adap-

tive learning methods to continuous-time. The mathematical results in section 4 link

discrete models to their continuous-time counterparts. Section 5 contains some ba-

sic results for simple learning method applied to continuous-time models. Using the

results of this paper we can conclude that the continuous-time framework is compa-

rable to discrete-time and that learning algorithms can be adapted and form well in
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this setting. Future extensions to work could include implementing a continuous-time

version of recursive least squares to simple continuous-models and creating a learning

algorithm with more feedback in a representative agent model. There remains much

to do in order to properly modify adaptive learning techniques to a continuous-time

setting.

A The Kolmogorov Forward Equation

The derivation of the KF equation is not always intuitive. Dixit (1992) gives one

of the clearest derivations of the KF equation targeted at economists. In this next

section, we will present this derivation and compare the KF equation to discrete

distributional methods. The Kolmogorov forward and backward equations govern

the more general dynamics of stochastic processes. Suppose we are in a discrete

system at a point (x1, t1 + ∆t) there two ways we could have gotten to this point.

First, we could have previously been at (x1 −∆h, t1) before moving forward in the x

direction. Alternatively, we may have been located at (x1 + ∆h, t1) and then moved

back in the x direction. Using this information we can write the probability of of

being at (x1, t1) as,

Π(x1, t1 + ∆t) = pΠ(x1 −∆h, t1) + qΠ(x1 + ∆h, t1)

in this equation p is the probability of moving forward in the x direction and q = 1−p

is the probability of moving backward. For a Brownian motion, dx = µdt + σdWt,

p = 1
2
[1 + µ

σ2 ∆h] and q = 1
2
[1 − µ

σ2 ∆h]. Using a Taylor expansion our previous
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expression will become,

Π(x1, t1) + Πt(x1, t1)∆t+O(∆t) =
1

2
[1 +

µ

σ2
∆h]

(
Π(x1, t1)− Πx(x1, t1)∆h

+
1

2
Πxx(x1, t1)(∆h)2 +O(∆h)2

)
+

1

2
[1− µ

σ2
∆h]

(
Π(x1, t1)

− Πx(x1, t1)∆h+
1

2
Πxx(x1, t1)(∆h)2 +O(∆h)2

)
.

As ∆t→ 0 this equation will become

Πt(x1, t1) =
1

2
σ2Πxx(x1, t1)− µΠx(x1, t1), (40)

our standard KF equation. This derivation is less intuitive and not as straight forward

for other stochastic processes.

B Deriving Equation (12)

First simplifying the original equation (10) we get,

β∆tλt+∆t[
(
f ′(kt+∆t)− δ

)
∆t+ 1] = λt (41)

Then we can set λt+∆t = λt + λ̇∆t and use the expansion β∆t = 1 + ∆t ln β

[1 + ∆t ln β][λt + λ̇∆t][
(
f ′(kt+∆t)− δ

)
∆t+ 1] = λt (42)

Foiling this out yields the following.

[λt∆t ln(β)+λt+λ̇∆t+λ̇(∆t)2 ln(β)][f ′(kt+∆t)−δ]∆t = λt−λt−λt∆t ln(β)−λ̇∆t−λ̇(∆t)2 ln(β)

(43)

49



Diving through by ∆t and then assuming any remaining terms with ∆t are negligible

we will get equation (12).

λt[f
′(kt+∆t)− δ] = −λt ln β − λ̇ (44)

C Steady State Algorithm for solving the HJB

The steady-state algorithm used in section 5 of this paper comes from Achdou et al.

(2014) and is one of the more simple solution methods in this setting.

For a simple Ramsey model as described in section 5, the algorithm proceeds as

follows,

1. Compute ∂kV (·) for all k

2. Compute the value of consumption from ci = (u′)−1[∂kV (·)]

3. Implement an upwind scheme to find “correct” ∂kV (·)

4. Using the coefficients determined by the upwind scheme create a transition

matrix for this system

5. Solve the following system of non-linear equations

ρV n+1 +
V n+1 − V n

∆
= u(V ) + AnV n+1

6. Iterate until V n+1 − V n ≈ 0

For the most part, the algorithm described above is a typical finite difference

scheme. The main difference between this algorithm and what is often used for value

function iteration is the upwind scheme. The upwind scheme described in this paper
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selects a forward difference when we experience positive drift, i.e. positive savings,

in our variable of interest, a backward difference if this drift term is negative, and

selects a steady state value if we see no drift. In this scheme, we continue our difference

algorithms for (n+1) iterations until we are no longer significantly updating our value

functions.

Now, we will describe the upwind scheme in more detail. For the algorithm

described above, we need to approximate three different derivatives, the backward

and forward difference of the first derivative of the value function and the second

derivative for the value function.

The forward difference will be given by,

Vi+1 − Vi
∆k

and the backward difference will be

Vi − Vi−1

∆k
.

The second derivative will be approximated by

Vi+1 − 2Vi + Vi−1

(∆k)2
,

where i represents the point in the k grid-space. When the drift of the state variable is

positive the upwind scheme will choose the forward difference and when it is negative

the upwind scheme will select the backward differences. If neither of these conditions

holds, then the upwind scheme will select a steady state value.

There are several different ways to explain the upwind scheme. We can think of

it as a method for consistent estimation in this setting. In this setting, we need our
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finite difference scheme to take the dynamics of our system into consideration.

Suppose we have the following HJB,

ρV (k, z) = max
c

u(c) + ∂kV (k, z)(f(k)− δk − c)− ∂zV (k, z)(ηzt) +
1

2
∂zzV (k, z)σ2

in order to approximate the derivatives of our values functions, we need to consider

the flow of k and z. For z this is simple since the sign of −ηzt will be the same for all

positive values of zt, we can use the backward difference at all points. This works as

long as our z-grid contains only positive points. (The log(zt) processes from earlier

in this paper was used to help ensure we could use only one differencing method).

Since, our values of k cannot be similarly limited, especially since they rely on

c, we need to use an upwind scheme in order to approximate the derivative in this

dimension. Suppose we at one specific point in the k-dimension and we are unsure

about the shape and differentiability of our value function. However, we do know that

the drift of the k process has a positive drift at that value of ki or in other terms, the

savings function at ki is positive. As discussed in Achdou et al. (2014), we can then

what matters most is how our value function changes when capital increases by a

small amount. Conversely, if savings are negative we want to measure how the value

function changes when capital decreases by a small amount. This is our motivation

for using the upwind scheme, this numerical approximation technique will take the

forward difference when savings is positive and the backward difference when savings

is negative.

It is worth noting that in fluid dynamics literature the upwind scheme is defined

differently. In these works, the upwind scheme takes the forward difference when drift

is negative and the backward difference when the drift is positive. This difference

emerges because these systems of partial differentials are solved forward in time,
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whereas in this setting we in effect solving our system of equation backward in time.

In the problems outlined in this paper, we are solving for the steady state of our

system. Hence, we are effectively at t =∞ meaning that our solution techniques can

be thought of as working backward in time.

D Alternative Specifications

This section of the appendix outlines several different initial specifications that could

have been used for the models in section 5 of this paper.

D.1 Learning the Process for Productivity

In section 5, the agents specified that θ was larger than its true value, 0.105 and σ

was smaller than its true value, 0.015. Now, in the following sections, we will look at

various misspecifications of these parameters and the convergence results. Below, is

a table of the various initial values we examine in sections D.1.1-D.1.7.

Specification θg σ2
g

Section 5 0.25 0.008

D.1.1 0.08 0.008

D.1.2 -0.11 0.008

D.1.3 2.0 0.008

D.1.4 0.25 0.8

D.1.5 0.25 1.5

D.1.6 -0.11 1.5

D.1.7 -0.11 0.8

Table 1: Initial values for σ and θ
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D.1.1

We first examine what would happen to this model if θ was set to be smaller and the

correct sign and if σ was also a smaller value. In this section the initial value for θg

is 0.08 and the initial value for σ2
g is 0.008.

(a) (b)

(a) (b)

The key differences in this specification are in the value function convergence. In

this setting the slope of the value function in the z dimension changes significantly

as the parameters update over time.

D.1.2

Next, we examined convergence when the initial θ value was set to a negative value

and left the value for σ smaller than the true value. In this section the initial value
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for θg is −0.11 and the initial value for σ2
g is 0.008.

(a) (b)

(a) (b)

These results were similar to the previous specification’s graphs.

D.1.3

The last value tested for θ was a much larger positive value, again σ was initialized

with a value smaller than the true parameter value. In this section the initial value

for θg is 2.0 and the initial value for σ2
g is 0.008.
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(a) (b)

(a) (b)

D.1.4

Next, different values for σ were explored. In the results below σ was set to be much

higher than the original value but still less than one and θ was set to a larger value.

Here the initial value for θg is 0.25 and the initial value for σ2
g is 0.8.

(a) (b)
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(a) (b)

D.1.5

The same algorithm was run with a θ value that was much larger than the true value.

In this section the initial value for θg is 0.25 and the initial value for σ2
g is 1.5.

(a) (b)

(a) (b)
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D.1.6

These initial values for σ were then run again with a small negative value for θ. In

this section the initial value for θg is −0.11 and the initial value for σ2
g is 1.5.

(a) (b)

(a) (b)

D.1.7

Last, we examine what would happen to this model if θ was set to be small and

negative and if σ was a large value. In this section the initial value for θg is −0.11

and the initial value for σ2
g is 0.8.
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(a) (b)

(a) (b)

D.2 Learning the Process for Capital

Section five examined converge when σg was set to a lower initial value than the true

parameter value, 0.5. In the following section we will explore different initial values

for σg with varying signs and magnitudes. Below is a table of the initial values we

will examine.
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Specification σg

Section 5 0.02

D.2.1 -0.02

D.2.2 8.0

D.2.3 -4.0

Table 2: Initial values for σ

D.2.1

In our first alternative misspecification we look at an initial value of σg that is the same

magnitude as the correct value, but the incorrect sign. In this section σg = −0.02.

(a) (b)

(a) (b)
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Figure 28

D.2.2

Next, we examine what would happen if the agents initial specification were much

larger than the true value. Here the initial σg is 8.0.

(a) (b)
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(a) (b)

Figure 31

D.2.3

Last, we set the initial value for σ so that it is negative and has a large magnitude,

σg = −4.0.
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(a) (b)

(a) (b)

Figure 34
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