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Abstract

We reconsider optimal decision making in a continuous-time framework using adap-
tive learning, specifically shadow-price learning, in a real business cycle framework.
The agent in our shadow-price learning model takes in information and updates their
forecasts of future states and their decisions regarding choice variables. This agent
makes decisions at high frequencies, which alters the volatility of the agent’s parame-
ter estimates and leads to smoother real-time convergence to the rational expectations
equilibrium. We attribute the less volatile convergence to the agent’s ability to alter
their forecasts more often as new information becomes available. We also investigate
alternative sampling methods where the data generating process is a higher frequency
than the agent’s observations; these sampling methods yield similar results to the case
where the agent takes in all data points and are less computationally burdensome.
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1 Introduction

Macroeconomic models often assume that both changes in the economy and agent’s decisions

occur at quarterly intervals, since data are most often available at that frequency. This

approximation is bound to generate a loss of precision; since individuals make decisions

about their employment, consumption, and investment at higher frequencies—arguably every

day—despite less frequent economic data on these measures. In the economy, factors such

as productivity and technology also change at a high frequency since computing power

and innovations change rapidly. While discrete-time models provide useful insight into the

economy, parameters that evolve quarterly and quarterly decision making can produce less

accurate measures of volatility in real business cycle models (Aadland, 2001). One way to

easily capture these high-frequency changes is continuous-time modeling, which assumes that

the economic system is constantly evolving. Thus, building economic models in continuous-

time provides an attractive alternative to discrete-time modeling.

We use a continuous-time real business cycle model combined with continuous-time adap-

tive learning dynamics, which allow our agent to improve their forecasts of key parameters

and their optimal choices at high frequencies, to show that volatility of parameter estimates

can be improved using high-frequency information. We demonstrate that the continuous-

time model has less volatile parameter estimates as the agent’s forecasts near rational ex-

pectations equilibrium (REE). Additionally, when examining these models near REE, the

second moments of the continuous-time model came closer to matching relative moments

from economic data than the model’s discrete version.

We chose the continuous-time setting not just because of its ability to include high-

frequency data and dynamics easily but also because it has a few key advantages over discrete-

time and has recently gained popularity in macroeconomics. This class of models had been

studied and examined in the past; however, continuous-time models did not gain the same

prevalence as discrete-time modeling in economics due to their more complicated solution

methods (Merton, 1971; Mirman, 1973; Mirrlees, 1971). With increased computing power
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and more interdisciplinary research from applied mathematics and engineering, continuous-

time macroeconomic models can now be easily solved even if they are involved. There are

several different solution methods for these models ranging from viscosity solutions as in

Kaplan et al. (2018), Achdou et al. (2020), and Ahn et al. (2018) to martingale methods as

in Brunnermeier and Sannikov (2014).

As this literature enters the mainstream, it is necessary to modify macroeconomic mod-

eling tools standard in discrete-time research. Thus far, continuous-time macroeconomic

literature has focused almost exclusively on rational expectations, a modeling assumption

wherein the agent knows key model parameters’ values and distributions. We aim to extend

an alternative to rational expectations, adaptive learning, to continuous-time literature.

Adaptive learning models allow the agent to misspecify parameters and then—using data

or knowledge that becomes available over time—update their estimates of these parame-

ters. One complication with extending this technique is time-dependency in continuous-time

models. For instance, the viscosity solution method and the martingale method both require

the system to be either independent of time or if the system is time-dependent, it must

be solved working backward from the steady-state (i.e., t = ∞). Neither of these methods

creates an ideal environment for learning; solving the system from the end of time backward

does not facilitate the agent’s observation of new data. Additionally, the solution meth-

ods for continuous-time systems that do not depend on time lack the necessary feedback

mechanisms for learning.

The insufficiency of feedback and observability in these methods necessitates the re-

examination of continuous-time macroeconomic problems in a new environment. In this

work and previous work, we have examined a linear-quadratic (LQ) framework that though

independent of time, allows for the feedback necessary for agent-level adaptive learning.

There are extensive studies of discrete LQ environments in economics and other fields, as

outlined in Kendrick (2005). One of the LQ setting’s key features is that the agent maximizes

an objective function with a quadratic form, leading to linear first-order conditions. However,
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most economic models are non-linear and do not fit into the traditional LQ format. Several

papers, including Benigno and Woodford (2004, 2006, 2012), use discrete-time linearization

techniques to recast non-linear models into the LQ setting. Benigno and Woodford (2012)

examines various linearization frameworks and how to ensure accurate linearization, the LQ

methods implemented in this paper carefully follow the dynamic programming approach

outlined Benigno and Woodford (2012) and Hansen and Sargent (2013).

With few exceptions (Hansen and Sargent, 1991), the continuous-time LQ environment

has been under-explored in the economic literature, despite its promise for building tractable

and complex economic models. The field of computational finance has a considerable number

of works on the continuous-time LQ environment, including Forsyth and Labahn (2007),

Wang and Forsyth (2010), Huang et al. (2012), and Xie et al. (2008). In these papers, the

optimization problems have a finite horizon, making these LQ settings distinct from the one

we will outline in this paper. Additionally, some studies implement learning dynamics in

linear optimal regulator problems; for instance, Vrabie et al. (2007) and Wang and Zhou

(2019) focus on reinforcement learning in an LQ environment.

Recasting non-linear models into the LQ setting has a few key advantages. The LQ

framework allows for the inclusion of many economic variables in a compact model, allowing

economists to study complex economies with ease. Additionally, solving LQ problems tends

to be less computationally intensive than solution methods for complex non-LQ economies.

These advantages are particularly relevant in the context of rational expectations equilib-

rium, solving the REE of the models outlined in the following sections takes mere seconds

using the LQ solution methods. This setting’s solution method also does not depend on

sparse grids or complicated differentiation schemes. The most important advantage of the

LQ-setting, concerning adaptive learning, is that LQ methods contain important feedback

mechanisms that allow us to understand the decisions an agent makes based on their obser-

vations; this is especially important in our shadow-price learning setting.

We aim to not only create a continuous-time setting where an agent learns how to fore-
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cast parameter values accurately; we construct a framework in which an agent learns to

forecast and make decisions optimally. An adaptive learning technique that accomplishes

both of these goals is shadow-price learning. Shadow-price learning, or SP-learning, assumes

the agent uses observations of state variables to understand how the states evolve and fu-

ture shadow prices. Using these estimates, the agent modifies their behavior using updated

shadow prices and the state transition dynamics through the LQ framework’s built-in feed-

back mechanism. Since the state variables’ evolution depends on the agent’s choices, the

agent’s behavior influences the states they observe. Eventually, after gaining enough infor-

mation, the agent in our SP-learning environment learns how to make decisions optimally

and how to forecast future state values.

SP-learning allows us to examine better our agent’s ability to learn to forecast and make

decisions in our economy. The agent in our setting does not know the conditional distribution

of key variables and faces uncertainty in our stochastic environment. It has been shown that

discrete-time SP-learning can converge asymptotically to fully optimal decision-making in

Evans and McGough (2018); we demonstrate that those same results hold in the continuous-

time version of a real business cycle (RBC) model. We also compare the results of the

continuous-time SP-learners to their discrete-time counterparts. Other works have explored

various adaptive learning dynamics in RBC models, including Branch and McGough (2011),

Eusepi and Preston (2011), and Mitra et al. (2013); this paper builds on this literature by

re-examining learning in a continuous-time real-business cycle model.

We also explore data frequency dynamics in the continuous-time version of the model

after inspecting the relationship between the discrete and continuous-time versions of the

model and learning outcomes in these settings. Though often overlooked in macroeconomic

models, data frequency impacts real-world decisions and macroeconomic outcomes. The

importance of data frequency in estimating continuous-time financial models via maximum-

likelihood methods has previously been studied in Aı̈t-Sahalia (2010), which examines model

estimation based on exact discrete-time estimates that take time-interval length into account.
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Here we approach this problem using learning algorithms that rely on recursive least squares

instead of the maximum likelihood approach.

As part of this exercise, we relax the assumption of continuous updating to better match

empirical reality. Our approach assumes that the agent views the time and the economic

changes as continuous occurrences and estimates a continuous-time version of our RBC

model. Because real-world agents take in information at discrete time intervals and then, in

turn, use this information to update their parameter estimates. Some additional considera-

tions have been made regarding data observation. In particular, we examine how observing

continuous processes at different frequencies impacts agents’ responses and how information

asymmetries can influence economic outcomes by comparing outcomes in an RBC model un-

der learning with varying data collection frequencies and examining a version of the model

wherein the agent collects data at varying frequencies. This question of how data availabil-

ity can impact economic agents is of increasing importance since data today is available at

increasingly higher frequencies. While quarterly data will likely be the most common fre-

quency in macroeconomic data for some time to come, as macroeconomists move to include

more micro-data and even big-data in macroeconomic analysis, we must consider how data

frequency can impact our models.

Our work accomplishes several tasks; first, we demonstrate that the continuous-time

learning algorithm does converge to rational expectations equilibrium. Then we closely

contrast the outcomes of discrete and continuous-time learning models. Our comparison

highlights the varying outcomes between these models, particularly the differences between

the volatility of estimates and convergence rates in this setting. Additionally, we explore

the linearization of simple macroeconomic models in continuous-time. There is sparse liter-

ature on this topic; some linearization of continuous-time macroeconomic models has been

researched in other settings (Ahn et al., 2018). We also build on the work done in Evans and

McGough (2018) and demonstrate that SP-learning can be modified for a continuous-time

setting. Lastly, we examine how data collection can impact the agent’s decisions in our
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model’s continuous-time version.

This paper proceeds as follows, section 2 outlines a simple real business cycle model in

continuous-time and describes the SP-learning algorithm that the continuous-time agent uses

to estimate parameters. A discrete-time version of this model is included in the appendix.

After separately examining the discrete and continuous-time algorithms, we compare the

rational expectations equilibrium of both settings and the learning outcomes in section 3. In

this section, we compare the second moments of the discrete and continuous-models to the

data; the continuous-time version of the model slightly outperforms the discrete version when

examining standard deviations of key variables relative to the standard deviation of output.

The fourth section examines the impact of data frequency on continuous-time models under

learning. The final section concludes.

2 A Real Business Cycle Model—An LQ Approach

The framework used throughout this paper is that of a standard real business cycle model.

We select this framework because our baseline model’s simplicity allows us to add complex

dynamics more easily. To efficiently use common SP-learning methods defined in Evans and

McGough (2018), we need our RBC model to fit into a linear quadratic format. Accomplish-

ing this involves linearizing our model objective function and recasting it into a quadratic

form. The purpose of utilizing the LQ framework is to generate a model that can be solved

recursively with clear and well defined connection between our agent’s perceptions, or ini-

tial prediction for the value function, and the rational expectations equilibrium value. The

continuous-time real business cycle model has a few key differences from a familiar discrete

model. Our objective function maintains a similar form; it employs an isoelastic utility func-

tion that depends on labor and consumption. However, our discount factor is represented

by an exponential function. Additionally, the processes that describe the evolution of capi-

tal and government spending now follow Brownian motions. Our household maximizes the
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following objective function over consumption and labor input,

V (k0, z̃0) = max
ct,kt,ht

E
∫ ∞
t=0

e−ρt
{
c1−σ
t

1− σ
− χ h

1+ϕ
t

1 + ϕ

}
(1)

subject to the following conditions on consumption, productivity, and capital,

ct + it = Akαt (ez̃tht)
1−α (2)

dz̃t = −θz̃ z̃tdt+ σz̃dZt (3)

dkt = (−δkt + it)dt. (4)

In equation (3) z̃ represents the logarithm of productivity and dZt is the increment of the

Wiener process1. Firms in this economy maximize profits, using a Cobb-Douglas production

function, f(kt, z̃t) = kαt (ez̃tht)
1−α. Under this production function the equilibrium rental rate

on capital is rt = αAkα−1
t (ez̃tht)

1−α and the equilibrium wage is wt = (1−α)Akαt (ez̃tht)
−αez̃t .

It is standard to take a dynamic programming approach to find the system’s steady-state.

Our value function problem takes the form of a Hamilton-Jacobi-Bellman (HJB) equation—

the continuous-time analog of a Bellman equation. The HJB for the household’s problem

takes the following form,

ρV (kt, z̃t) = max
ct

{
c1−σ
t

1− σ
− χ h

1+ϕ
t

1 + ϕ

}
+ Vk(−δkt + Akαt (ez̃tht)

1−α − ct)− θVz̃ z̃t +
1

2
Vz̃z̃σ

2
ε

the terms Vk, Vz, and Vzz all represent partial derivatives of the value function V (k, z)

these terms are functions of k and z. The main difference between the HJB and a Bellman

equation is how expectations are handled in continuous-time. Deriving expectations of the

future value function requires using Itô’s lemma since our state variables’ evolution depends

on continuous-time stochastic processes. Using the HJB we can find the non-stochastic

1One method of approximating dZt, is setting dZt = εt
√
dt where εt ∼ N(0, 1) (Dixit, 1992). Thus the

increments of the Wiener process are independent and Gaussian.
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steady state values for our parameters by analyzing this system’s first order conditions

ρVk = Vk(αAk
α−1(ez̃h)1−α − δ)

c−σ = Vk

χhϕ = Vk(1− α)Akα(ez̃h)−α

in this setting Vk is analogous to the shadow-price of capital as it measures the estimated

value of a unit of capital. With our first order conditions defined, a numerical optimizer

can be used to find the non-stochastic steady-state for our household’s problem. Knowing

the non-stochastic steady-state values of key parameters allows us to linearize our model

about this point and simplifies the eventual LQ system we build in this work. After finding

the system’s non-stochastic steady state, we re-examine the planner’s problem. First, we

eliminate consumption, ct, from our objective function by re-writing it as a function of

capital, labor, investment, and productivity. This allows us to recast our maximization

problem so that it only depends on state and control variables,

V (x0) = max
xt,ut

E
∫ ∞
t=0

e−ρtr(xt, ut).

where,

r(xt, ut) =
1

1− σ
[Akαt (ez̃tht)

1−α − it]1−σ − χ
h1+ϕ
t

1 + ϕ

The vectors xt and ut contain the state and control variables for the system, xt = (1, kt, z̃t)
′

and ut = (ht, it)
′. Now that the maximization problem is in terms of the state and control

vectors, we use a second-order linear approximation of r(x, u) about the non-stochastic steady

state to recast the maximization problem into a linear-quadratic format.

The second-order Taylor expansion about the steady-state—where x̄ and ū are the steady-
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state values of x and u is standard and the same in continuous and discrete-time,

r(x, u) = r(x̄, ū) + (x− x̄)′rx(x̄, ū) + (u− ū)′ru(x̄, ū)

+
1

2
(x− x̄)′rxx(x̄, ū)(x− x̄) +

1

2
(u− ū)′ruu(x̄, ū)(u− ū) + (x− x̄)′rxu(x̄, ū)(u− ū)

automatic differentiation can be used to compute the partial derivatives of r(x, u). Once this

is complete the problem is easily reformatting into a linear quadratic problem. This system

does not gain any terms from Itô’s lemma since the Taylor expansion is about a single point,

instead of a stochastic process.

The maximization problem can now be put into a standard LQ representation. Our

objective function now depends on several matrices, R is a 3 × 3 matrix that summarizes

how our states impact the optimization problem directly, Q is a 2× 2 matrix that describes

how choice variables affect the system, and W is a 3×2 matrix that captures indirect effects

(terms that involve both x and u). Below is the continuous-time LQ representation of our

RBC model,

V (x0) = max
ut
− E

∫ ∞
t=0

e−ρt(x̂′tRx̂t + û′tQût + 2x̂′tWût)

where the state variables evolve according to

dx̂t = Ax̂t +Bût + CdZt.

This problem is linearize about the steady-state, thus x̂t = xt − x̄ and û = ut − ū. The

matrices R, Q, and W are equivalent to the following,

R
3×3

=

 r(x̄, ū) 1
2
rx(x̄, ū)

1
2
rx(x̄, ū) 1

2
rxx(x̄, ū)

 Q
2×2

=

[
1
2
ruu(x̄, ū)

]
W
3×2

=

 ru(x̄, ū)

rxu(x̄, ū)


The matrices R, Q, and W are the same for both the discrete and continuous-time version of

our model. Although the matrices that summarize our objective function remain the same
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between these two settings, the matrices that describe the evolution of our state variables are

not the exactly alike. In the continuous-time setting our matrix A is noticeable different from

what we might expect from a discrete version of the model. This is because in continuous-

time our system depends on changes in the state variables not on levels of the state variables

at particular moments of time. The matrices that describe the evolution of our states are

defined as follows,

A =


0 0 0

0 −δ 0

0 0 −θ

 B =


0 0

0 1

0 0

 C =


0

0

σz̃


this difference occurs because in the discrete version of our model we are measuring the level

of x̂t whereas in the continuous version we are calculating changes over increments of time.

To solve the value function problem we utilize a “guess-and-verify” approach by positing

that the value function takes the form V (xt) = −x′tPxt − ξ, where P is a positive semi-

definite matrix. We then solve for P by substituting our supposed value function into the

HJB equation

ρx′Px+ ρξ = max
u
{x′Rx+ u′Qu+ 2x′Wu+ 2x′P (Ax+Bu) + P (CC ′)}. (5)

As previously mentioned, one of the advantages of the LQ setting is its neat recursive solution

methods. To implement this method we need to eliminate x and u from equation (5), this can

be achieved by finding the system’s policy function (a function that defines choices u based

on states and model parameters). Using this system’s first order conditions with respect to

u we can define this system’s policy function,

u = −(Q′)−1(W + PB)′x = −F̃ x. (6)

Combining the policy function in equation (6) and the system in equation (5) allows us to
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eliminate both u and x from the system. With the state-independent version of our value

function problem we formulate a recursive algorithm that solves for the value function matrix

P (Anderson and Moore, 2007; Vrabie et al., 2007),

Pi = −(2Ã′i)
−1(F̃ ′iQ

−1F̃i +R− 2WF̃i) (7)

ξi = ρ−1trace(Pi−1CC
′) (8)

where Ãi = (A−BF̃i− .5ρ), F̃i = (Q′)−1(W +Pi−1B)′, i represents iterations of the recursive

algorithm, and P0 is set exogenously. Additionally, note that this system is formulated under

the assumption that A is symmetric.

Several conditions must be met to ensure solutions to the algorithm are asymptotically

stable and exist (Lewis, 1986; Anderson and Moore, 2007; Evans and McGough, 2018).

LQ.1 The matrix R is symmetric positive semi-definite and can be decomposed in R = DD′

by rank-decomposition, and the matrix Q is symmetric positive definite.

LQ.2 The matrix pair (A,B) is stabilizable—there exists a matrix F̃ such that A − BF is

stable, meaning the eigenvalues of A−BF̃ have modulus less than one.

LQ.3 The pair (A,D) is detectable—if y is a non-zero eigenvector of A associated with eigen-

vector µ then D′y = 0 only if |µ| < 0. Detectability implies that the feedback control

will plausibly stabilize any unstable trajectories.

The continuous-time recursive algorithm will have a unique solution provided that the condi-

tions in LQ.1-LQ.3 hold true for this system’s R, Q, A, and B matrices and the continuous-

time policy function F̃ .2 Conveniently, the conditions outlined in LQ.1-LQ.3 also apply to

the discrete-time version of this system; the only difference being that the discrete problem

has a different policy function F . Now we turn to adding adaptive learning dynamics to our

linearized RBC model.

2For a proof of this result, see Lewis (1986).
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2.1 Shadow-Price Learning in the Continuous-Time RBC Model

The recursive solution method for our linearized model has a clear linkage between percep-

tions and actuality, which can be used to establish learning dynamics in this setting (Evans

and McGough, 2018). Focusing on equation (7), we see a relationship between our agent’s

initial perception, Pi−1, and updated calculations of their value function matrix Pi. In this

setting we define the agent’s perceived value function as V P (x) = −x′T (P )x where T (P ) is

our T-map, the formal link between perceptions and actuality in learning models.

The T-map, T (P ) is matrix function that maps an initial perception of shadow-prices,

P , to the updated shadow-prices generated by our agent’s choices. Our T-map’s fixed point,

T (P ∗) − P ∗ = 0, is our learning model’s equilibrium point, given that certain stability

conditions hold. As shown by our derivation of the recursive algorithm in (7) and (8), the

stochasticity of our system does not impact the solution to our value function problem.

The solution for P is not impacted by the stochastic term C. Knowing this, we begin our

explanation of the learning algorithm by focusing on our problem’s non-stochastic version.

The agent’s perceived value function in the continuous-time non-stochastic setting is,

ρV P (x) = max
u
{−x′Rx− u′Qu− 2x′Wu− 2x′P (Ax+Bu)}. (9)

The unique optimal control decision for perceptions P is given by,

u = −F̃ (P )x = −(Q′)−1(W + PB)′x.

Our policy function is then substituted into equation (9) to find the T-map for our system,

T (P ) = (2Ã′)−1(F̃ ′Q−1F̃ +R− 2WF̃ ) (10)

here Ã = A − 1
2
Iρ − BF̃ and we again assume that Ã is symmetric. The T-map above

describes the mapping between perceptions and reality in a model without stochasticity.
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The unique fixed point, P ∗ of this mapping, is the solution to our value function problem.

This result has been proved in discrete-time and has been analytically demonstrated to hold

for continuous-time models (Evans and McGough, 2018; Lester, 2020). As in the discrete-

time case, the non-stochastic case mapping will yield the same fixed point as the T-map for

the stochastic version of the system.

Thus far, the continuous-time learning dynamics assume that our agent knows infor-

mation about the value function’s quadratic nature and the values of the state transition

dynamics. These assumptions are strict, it is unlikely an average person would understand

the form of their utility function let alone assume that it was quadratic in nature. Instead

it is more likely they estimate the system’s shadow-prices using a simple linear forecasting

rule. Equation (11) represents this simple linear forecasting model, where the agent predicts

shadow prices µt using state values,

µt = Hxt + εµt . (11)

The matrix H is the shadow-price parameter matrix as we soon show it is directly related

to our value function matrix P , in fact H = −2P at rational expectations equilibrium. This

forecasting rule can then be used to estimate the shadow-price parameters for our state

variables, x.

E[Vx(x)] = µe = Hx

where µe is the updated estimate of µ. We use this forecasting rule to estimate the future

expected utility in our HJB equation,

ρV (x) = max
u
{−x′Rx− u′Qu− 2x′Wu+ (Hx)′(Ax+Bu) +

1

2
(H ′CC ′)}.

Our modified HJB equation provides insight into how our agent selects optimal choice vari-

ables under their forecast of shadow-price parameters. Again we use the policy function to
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eliminate x and u from our system, to create a compact recursive solution method. We find

our learning agent’s policy function using the first-order conditions of the HJB,

u = −1

2
(Q−1)′(2W −H ′B)x = −F̃ SP (H,B)x.

Then to get the mapping from the PLM to the actual law of motion (ALM) we use the

envelope condition,

ρE[Vx(x)] = ρµe = −2x′R− 2u′W + 2x′A′H + u′B′H. (12)

we can rewrite (12) as,

µe = ρ−1{−2x′R− 2u′W + 2x′A′H + u′B′H}

= ρ−1
(
− 2R + 2H ′A− (H ′B − 2W )F̃ SP (H,B)

)
x (13)

= T SP (H,A,B)x.

The T-map in equation (13) will define the mapping between the agent’s PLM in equation

(11) and the actual law of motion (ALM) of the system. Our T-map allows us to model

the boundedly rational behavior of an agent in this model, using a continuous-time analog

to recursive least squares (RLS) that has been derived using the parallels between RLS and

the Kalman filter (Lewis et al., 2007; Ljung and Söderström, 1983; Huarng and Yeh, 1992).

A brief discussion of recursive least squares methods is necessary before we define our

SP-learning algorithm. To create a functional SP-learning algorithm, we need to define how

the agent updates forecasts in the continuous-time setting. In discrete-time, this forecasting

updating rule takes the form of RLS, an adaptive algorithm that allows an agent to update

their parameter estimates as they acquire additional information. We begin in a discrete
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setting with a simple linear regression model,

yt = θ′xt + εt.

For this example yt is a vector that contains our dependent variable, xt is a matrix of

independent variables (the information that agents’ receive), θ is a vector of coefficients, and

εt our error term, which is assumed to be a normally distributed white-noise process. The

recursive least squares algorithm’s objective is to update parameter estimates as new data

points are observed by minimizing a weighted function of the summed of squared errors. In

discrete-time this objective function takes a familiar form,

φN(θ) =
1

N

N∑
t=1

αt[yt − θ′xt]2.

since this is a weighted least squares problem, αt is a vector of weights set by the modeler.

This vector of weights is related to the gain parameter present in most adaptive learning

algorithms. Using this estimator we arrive at a simple recursive algorithm for estimates of

the vector of parameters θt and the second moment of the data xt,

θ̂t = θ̂t−1 + γtR−1
t xt−1[yt − θ̂′t−1xt], (14)

Rt = Rt−1 + γt[xtx
′
t −Rt−1],

the parameter γt is the aforementioned gain parameter. The RLS algorithm allows for the

agent to use an initial estimate of the coefficient matrix and second moment matrix, Rt, and

then update their estimates as they acquire additional information.

RLS takes a similar form in the continuous-time setting; however, our algorithm becomes

a system of stochastic differential equations. We begin with a stochastic differential equation
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instead of the linear regression model,

dyt = θ′xtdt+ dZt

the term dZt represent the increment of the Wiener process as we’ve described previously.

The RLS estimator now takes the form of

φN(θ) =
1

N

∫ N

τ=1

ατ [dyτ − θ′xτdτ ]2.

The continuous-time version of RLS is then found using parallels between recursive least

squares and other filtering methods (Sastry and Bodson, 1989). We use a constant gain

algorithm in this work, thus below is a version of RLS where γt is set as a constant. Im-

plementing this version of RLS means that individuals put equal weight on all observations

and expect some noise in their parameter estimates,

dθ̂t =
1

1− γt
Ptxt[dyt − θ̂′t−1xtdt], (15)

dPt =
1

1− γt
[γtPt − Ptxtx′tPt]dt.

It is most common in continuous-time literature to use the matrix Pt, the covariance matrix,

to avoid matrix inversion. The “recursive least squares filter” as it often called in engineering

literature, is strikingly similar to the system in (14). By observation one can see that (15)

is essential the derivative of the system in (15) with respect to time. For a full derivation of

the continuous-time RLS system, please see the appendix or Goodwin and Mayne (1987).

With an established background in Shadow-Price learning dynamics and continuous-time

recursive least squares, we can now outline an algorithm that models an agent’s bounded

rationality in our framework. In this system, the agent’s policy function F̃ impacts the

choices they make, and the future states they observe. Thus, our learning algorithm includes

updates to the state variable impacted by the agent’s choices and subsequent updates to
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agent’s choice and forecasts based on the current state of the economy.

dxt = Axtdt+Butdt+ CdZt

dPt =
1

1− γt
(γtPt − Ptxtx′tPt)dt

dH ′t =
1

1− γt
Ptxt(λt −Htxt)

′dt

dA′t =
1

1− γt
Ptxt(dxt −Butdt− Atxtdt)′ (16)

ut = −F SP (Ht, B)xt = −1

2
(Q′)−1(2W −HtB)′xt

λt = T SP (Ht, At, B)xt

γt = κ(t+N)−ν .

In this algorithm Pt is the covariance matrix, unlike the discrete algorithm that uses Rt, an

approximation for the second moment, Pt can tend toward zero, something we need to be

careful of in our setting (Sastry and Bodson, 1989). The use of Pt reduces the computational

burden of taking the matrix inverse and is more in-line with the continuous-time Kalman

filter notation. The gain parameter, γt, will again be assume to be constant with κ = 0.01

and ν = 0.

2.1.1 Continuous-Time Learning Results

Now that we have defined an agent’s bounded rationality in this setting, we can examine

our learning algorithm’s convergence. Before we can examine the dynamics of the learning

model, the model parameters must be set. The continuous-time model was selected to

align with parameters from discrete-time literature. To select appropriate values for some

of the parameters, such as the discount factor, we consulted Kaplan et al. (2018). For the

continuous-time SP-learning algorithm, it is necessary to approximate the time-step dt. We

selected 1/100. Since the discrete-time version of the model is calibrated based on quarterly
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data, dt = 1/100 indicates that our agent updates parameters at least once a day.3 The

final parameters, σz̃ and θz̃ were set in accordance with discrete time literature. The process

for z̃t defined in equation (3) is the continuous-time analog to an AR(1) process, thus there

exist many comparisons of the two. Basing our estimates off a discrete model with an

auto-regressive term of 0.895 and white-noise term with a standard deviation of 0.01, the

parameters of the continuous-time model are set to θz̃ = 0.105 and σz̃ = 0.01.4 Table 1

summarizes the parameter values for the continuous-time model.

Table 1: Continuous-Time Parameter Values

Description Parameter Value

A Total Factor Productivity 1.0

ρ Discount factor 0.01

σ Intertemporal elasticity of subst. 1.0 (log utility)

ϕ Frisch elasticity of labor supply -1.0 (log utility)

χ Disutility of labor 1.75

α Capital share 1/3

δ Depreciation rate 0.025

θz̃ Drift parameter for tech. 0.105

dt Approximation of time-step 1/100

σz̃ Standard deviation for tech. 0.01

After finalizing key parameter values, we focused on the initial values for the learning

algorithm. The misspecification used in this setting varied from the discrete-time version.

Here A and H were set to small negative constants times identity matrices. Initial values

for x0 and u0 were, again, set near steady-state values. The second-moment matrix P was

3Approximately 1.09 times a day. Assuming 91 days in a quarter.
4With our naive estimation approach, the limiting distributions of the discrete and continuous-time

models have approximately the same variance (Posch et al., 2011). For the discrete-time case Var(x) =
σ2
z

1−θ2z
= (0.01)2

1−0.8952 ≈ 0.0005. While in the continuous-time setting Var(x) =
σ2
z̃

2θz̃
= (0.01)2

2·0.105 ≈ 0.0005.
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Figure 1: Convergence of Shadow-Price Parameters

initialized based on initial values of x0. Misspecification in the continuous-time was set to

ensure stability with the continuous-time T-map and policy function. While the SP-learning

algorithm’s initialization does not need to be near the REE, it is best if the initial policy is

stable, meaning the T-map’s derivative has eigenvalues within the unit root. Additionally,

the agent in this setting understands the basic structure of the transition matrix A and does

not use the constant in estimating parameters; instead, they estimate the technology and

capital processes’ parameters separately.

Simulations of the model were run for the equivalent 10, 000 discrete-time periods so the

agents were able to update their forecasts over (100 × 10, 000) iterations, since dt = 1/100.

Examining figure 1 we see that in the continuous-time model the agent’s estimates converge

quickly and fluctuate around their REE values. At the end of 10, 000 periods the agent

in continuous-time model forecasts a shadow-price parameter matrix that is a distance of

11.25 from REE according to the matrix norm measurement. The agent also updated their

estimates of the state transition matrix A over these 50,000 periods. The distance between

the agent’s estimate of A and the true transition matrix, measured using matrix norms, is

0.012 after only 10,000 periods.

Thus far, we have demonstrated that the continuous-time real business cycle model con-
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verges to REE under our SP-learning algorithm. Next, we compare these models’ learning

outcomes to understand the differences between bounded rationality in these settings. The

following section of this paper examines parameter values and their distances from REE

values, the volatility of these models’ estimations, and the second moments of key variables,

as is common in real business cycle literature.

3 Comparing Discrete and Continuous-Time Systems

We now compare the REE values to the learning models’ outcomes, with the models initial-

ized “far-away” from the rational expectations equilibrium. As measured by state and choice

variable values, the economic outcomes of the discrete and continuous-time models closely

match REE values after 50,000 periods; however, the continuous-time model comes closer to

reaching the REE for shadow-price parameters. Additionally, the continuous-time model’s

shadow-price parameter estimates display less volatility than the estimates for the discrete-

time model, implying that the continuous-time learning estimates exhibit more stability than

their discrete counterparts.

For some reference, the rational expectations equilibrium values of the discrete and

continuous-time shadow-price parameter matrices are given in equations (17) and (18). Solu-

tions for the steady-state values of key variables and the value function matrix H are similar

for the discrete and continuous-time versions of the real-business cycle model.

H∗Discrete =


−190.764 1.29026 7.67191

1.29026 −0.0753887 −0.210606

7.67191 −0.210606 2.73081

 (17)

and
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H∗Continuous =


−190.642 1.2759 7.6087

1.2759 −0.0724069 −0.212827

7.6087 −0.212827 2.64364

 (18)

The fact that the continuous-time matrix is so close to the discrete-time version (the matrix

norm of the discrete solution minus the continuous one is 0.386) solidifies that these matrices

are the equivalent solutions to their respective problems.

There are some minor computational gains when solving for the rational expectations

equilibrium in continuous-time. The discrete version of the recursive LQ algorithm presented

which is presented in the appendix converges in 0.009413 seconds and 1,333 iterations for

the model with government spending. While the continuous version, from section 2, con-

verges in 0.000316 seconds and 11 iterations.5 Additionally, the discrete-time algorithm used

10.764 MiB of memory, while the continuous-time version only required 0.2849 MiB. The

continuous-time LQ algorithm’s speedier convergence is not observable by the programmer

in this instance but could have serious impacts on a more complex economy with more than

four state variables.

3.1 Comparing Learning Outcomes

Comparing learning outcomes between the discrete and continuous-time models is difficult

since there are many factors to consider, such as the distance between REE and the initial

specifications and how the initial covariance/second-moment matrix is set. Since the learning

algorithms both implement constant gain, the most accurate method of comparing learning

outcomes in both models is to examine the learning parameters over the last 1, 000 periods

of the learning iterations.

For a better comparison between the discrete and continuous-time cases, we have only

included points from the continuous models that occurred at the end of each discrete period,

5Run-times were calculated using the instructions in Julia documentation. This requires compiling func-
tions beforehand for accurate measurements.
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so the continuous-time mean values and standard deviations are calculated using the same

observation size as the discrete-case. Without this sampling scheme, the continuous-time

standard deviations would still be almost the same any change in these values occurred at

the third (or higher) decimal place. Standard deviations of state and choice variables are

included in the table, in parentheses underestimated parameter values.

In our shadow-price learning algorithm, the agent forecasts two key objects, the state

transitions matrix, and their shadow prices; these state-transition dynamics and shadow-

prices impact the system’s evolution via the choices our agent makes regarding investment

and hours worked. We first examine the impact of learning on key parameters’ values, such

as investment and capital, before more closely examining shadow-price parameters. Table 2

lists the REE equilibrium values of economic variables for the continuous-time and discrete-

time models as well as the averaged learning outcomes over the last 1,000 periods.

Table 2: Steady State Values and Learning Outcomes

Discrete Continuous

Variable REE Value Learning REE Value Learning

Labor 0.333 0.333 0.333 0.333

Investment 0.244 0.243 0.245 0.245

Capital 9.749 9.758 9.797 9.805

Consumption 0.783 0.783 0.784 0.785

Wages 2.054 2.055 2.057 2.059

Rental Rate on Capital 0.035 0.035 0.035 0.035

Although the differences between the discrete-time and continuous-time steady state val-

ues are similar they highlight a few key differences between the systems. In the continuous-

time system, steady-state wages are slightly higher, as is an investment. This is likely

necessary to help offset continuous-time discounting. Learning outcomes between these two

models are similar; however, the discrete version of our learning model appears to underes-
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timate the level of capital. This likely comes from the shadow-price parameter estimates as

these impact the agent’s investment choices, which in turn impact capital accumulation.

Next, we examine the shadow-price parameters. The matrix norm between the agent’s

forecast of H and the REE was 2.35. in the continuous case and 2.42 in the discrete case.

In the discrete case, the matrix norm between the initial guess H0 and the true value was

192, and in the continuous version, that same measure was 191.

To analyze the difference between shadow-price forecasts in the continuous and discrete

model, we again examine the last 1,000 periods of both learning algorithms. Table 3 contains

the average learning outcome over the last 1,000 periods, the standard deviation of the

parameter over the last 1,000 periods, and the rational expectations equilibrium values.

Table 3: Shadow-Price Parameter Outcomes

Learning Outcome REE Value

Variable Discrete Continuous Discrete Continuous

Constant -189.909 -190.564 -190.764 -190.642

(0.026) (0.0018)

Capital -0.077 -0.075 -0.075 -0.072

(0.0002) (0.0000)

Productivity 2.544 2.548 2.731 2.644

(4.64) (0.004)

Overall the continuous-time version of the model has more accurate measures of shadow-

price parameter values and lower standard deviations for these parameter estimates.

3.2 Comparing the Accuracy of the Models’ Second Moments

After examining the parameter estimates under SP-learning dynamics, a few questions arise

about the impact of continuous-time on the model’s second moments. In real business cycle

literature, it is common to examine the theoretical model’s second moments and compare

23



them to economic data (Plosser, 1989; Hansen and Wright, 1992; Romer, 1996). In this

exercise, we compare the outcomes of the discrete and continuous-time learning models to

second moments from data that have been detrended using the HP-filter.

Economic data from 1960-2019 on GDP, consumption, investment, wages, and hours

worked was collected using the FRED database. Then using the HP-filter and logarithmic

transformation, we detrended the data. We simulated the same model used in the previous

sections to compare the second moments between the data, discrete, and continuous-time

systems. The calibration of our model was changed the stochastic process for technology

in this version has an auto-correlation term of 0.99 in the discrete case and 0.01 for the

continuous-time case. In both instances, the standard deviation of the white-noise process

was also set to 0.01. In the continuous-time setting time intervals, dt are approximated as

1/100. This approximation of dt means that the agent updates their estimates about once

a day since the discrete model is calibrated using quarterly data.

Each model’s economy was simulated for 240 periods (the same number of periods present

in the data). We ran these simulations one thousand times for the discrete and continuous-

time models with learning dynamics and applied the logarithmic transformation and HP-filter

to these 1,000 series. We report standard deviations and correlations averaged over all 1,000

simulations in table 4. Since the variables we measured are primarily flow variables, the

continuous-time model’s points were aggregated by integrating information to compare with

the discrete model. Table 4 displays the standard deviations of values from the data and the

theoretical models, along with the correlations between key variables and output.
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Table 4: Second Moments and Autocorrelations of Key Economic Variables

Standard Deviation* Correlation with Output

Variable Data Discrete Continuous Data Discrete Continuous

Output 1.43% 1.02% 1.02% 1.00 1.00 1.00

Consumption 0.510 0.485 0.487 0.748 0.971 0.773

Investment 2.880 2.757 2.877 0.799 0.989 0.972

Hours 0.646 0.365 0.456 0.650 0.982 0.854

Wage 0.660 0.650 0.624 0.172 0.994 0.925

*standard deviations for variables other than output are measured relative to output

The continuous-time version of the model matches the relative second moments from the

data slightly better for consumption, investment, and hours worked. While the continuous

version of the model still overestimates economic variables’ procyclicality, it does so by less

than the discrete version.

4 Learning and Data Frequency

Now that we have outlined methods and results for continuous-time learners, we examine

outcomes when an agent takes in information over larger intervals. In this section, the

economy that the agent participates in is continuous, and state variables update continuously

as well; however, the agent is only capable of taking in observations at lower frequencies. This

setting parallels the real-world where we may believe that economic factors like productivity

or even GDP are continually updating. However, due to our limited ability to take in

information and data availability restrictions, we cannot constantly update our estimates

of these parameters. Our state variables evolve according to a continuous-time process we

approximate as updating daily—dt ≈ 1/100. We examine three different agents in this

setting. The first updates information weekly, the second bi-weekly, and the third every

day. An essential aspect of our agent’s forecasts is that they understand that they are
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approximating a higher frequency process, i.e., the weekly updater understands that they

are using weekly data and includes that information in their estimations.

4.1 Learning under Varying Data Frequencies

As previously mentioned, the agents in this section exist in an economy where variables

are continuously evolving. They maximize their utility subject to the continuous-time RBC

model in section 2. However, the agents in this setting do not continuously update their

parameters. Instead, they only observe data at specific time intervals, and they know they

are approximating a continuous-time system using this discrete data. Considering this, they

use ∆—the time step of their discrete observations—in their forecasts to approximate dt. The

learning algorithm implemented by these agents is similar to the continuous-time algorithm,

with a few key changes.

dxt = Axtdt+Butdt+ CdZt

∆Pt =
1

1− γt
(γtPt − Ptxtx′tPt)∆

∆H ′t =
1

1− γt
Ptxt(λt −Htxt)

′∆

∆A′t =
1

1− γt
Ptxt(xt −But∆− Atxt∆− xt−∆)′ (19)

ut = −F SP (Ht, B)xt = −1

2
(Q′)−1(2W −HB)′xt

λt = T SP (Ht, At, B)xt

γt = κ(t+N)−ν .

The state variables for this system still evolve continuously but now they are observed at

distinct periods of time. Meaning the agent will observe, x1, x1+∆, x1+2∆ + . . . xτ where τ

represents the end period of the model.

We examine three different agents that observe data at the three varying frequencies

in this system. For ease, we assume that our state variables evolve almost daily and ap-
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proximate dt = 1/100. This is consistent for all agents in this section and is the same

approximation of dt used in the previous sections. For these versions of the model, the same

parameterization from 2 is recycled; however, the three models explored in this section have

an additional parameter ∆. The new parameter ∆ represents the intervals at which agents

take in additional information, whereas dt is the actual time interval for the data generating

process.

We use three specifications, one where ∆ = 1/25 for individuals that update their esti-

mates every four days, or about twice a week, another with ∆ = 1/50 to represent weekly

up-daters, and the last has ∆ = 1/100 meaning that the agent observes every point in the

true data generating process. In all three of these cases, agents updated thier shadow-price

forecasts over 10,000 discrete-time periods (in this case, over 10,000 quarters). Initially, this

exercise examines the differences in learning dynamics over varying time intervals. However,

learning outcomes are nearly identical in all three cases– likely because we did not constrain

the number of learning iterations and gave each type of agent 10,000 periods of data. The

only major difference between these specifications was run-time. Measurements for matrix

norms and the standard deviation of matrix norms were measured using the mean matrix

norms and standard deviation of the matrix norm over the last 1, 000 discrete-time periods.

Table 5: Continuous-Time Learning Results under Varying Data Frequencies

dt Specification Matrix Norm Norm Std. Computational Time

dt = 1/364

∆ = 1/364 12.86 15.37 187

∆ = 1/91 13.26 15.56 58

∆ = 1/52 13.34 15.49 19

∆ = 1/26 13.07 15.12 12

dt=1/100

∆ = 1/100 13.28 16.96 36

∆ = 1/50 13.25 16.88 12

∆ = 1/25 13.46 17.13 7
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Table 5 demonstrates that one the short comings of the continuous-time learning algo-

rithm, long run-times, can be minimized by implementing different sampling frequencies.

This table also includes extra specifications using dt = 1/364 to provide additional evidence

on how sampling frequencies and smaller approximations for dt can reduce computational

time.

5 Conclusion

Rational expectations is a powerful modeling tool that allows economists to compute equi-

librium outcomes efficiently. However, as we look to micro-foundations, that assumption of

rational expectations is far too strict. It is unlikely that individuals understand the evolution

and distribution of productivity or the capital stock. It is also unlikely that they understand

how to fully optimize when making decisions.

The adaptive learning literature has relaxed both of these assumptions; in this paper, we

relax a third assumption: that agents make decisions intermittently at fixed time intervals.

Previous literature has approached optimization and forecasting as a discrete problem. We

introduce a continuous-time shadow-price learning algorithm that converges to the rational

expectations equilibrium without imposing unrealistic assumptions.

Not only does this result match the point estimates in the continuous-time rational

expectations model, it improves the estimates volatility when compared against discrete-

time models and economic data. This result supports the outcomes of continuous-time

rational expectations models while demonstrating that convergence in the continuous-time

setting is not the same as convergence in the discrete-time case. Our continuous-time model

displays less volatile shadow-price parameter estimates and smoother convergence (measured

using matrix norms) of the shadow-price parameter matrix to REE values. This decreased

volatility demonstrates that when agents gain more information more rapidly and have the

ability to update their forecasts more frequently, they will make smaller, less reactionary
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updates to their predictions and choices.

Furthermore, we demonstrate that the continuous-time version of the model can pro-

vide improvements when matching the data’s second moments. Since the continuous-time

model more closely matches the data and displays less volatile convergence to the REE val-

ues of shadow-price parameters, we can conclude that our continuous-time model captures

important dynamics that the discrete version of our model does not.

Though helpful in demonstrating the continuous-time framework, continually updating is

unlikely for agents and computationally burdensome for modelers. In a refinement exercise,

we introduce an alternative sampling method that allows the continuous-time agent to sample

data observed at high frequency and update their forecasts less frequently. This alternative

sampling method results in faster computational time and similar parameter estimates.

Since the continuous-time shadow-price learning algorithms presented in this work con-

verge to REE, it would be simple to conclude that we should model agents as fully rational

and fully optimizing or as discrete decision-makers. However, in reality, agents are not in-

finitely lived, and they may experience structural changes that will cause them to re-evaluate

their decisions. Additionally, there are key differences between convergence in continuous and

discrete settings. These dissimilarities show that the agent more gradually converges to REE

in continuous-time and makes less volatile choices as they near convergence. It seems that

continuous-time agents make more stable decisions and smaller updates to their choices. The

proposed framework improves on two desirability properties of agent optimization models:

predictive precision and assumption parsimony.

Continuous-time adaptive learning literature is limited, and there is much work to be done

on this topic. We intend to explore extensions to this work, including further improvements

to the shadow-price learning algorithm. Improvements to our basic shadow-price learning

algorithms likely exist; unlike the discrete version of the algorithm, our problem is a sys-

tem of differential equations with no matrix inverse necessary. Therefore, we could attempt

to simplify our problem using matrix algebra. We also would like to apply this method
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to a wide range of macroeconomic and financial models. For instance, many portfolio se-

lection problems are already in the LQ format; thus, our shadow-price learning framework

could be easily extended to these models. Additionally, we would like to find applications

for continuous-time adaptive learning algorithms to economic models outside of the linear-

quadratic format.
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A The Discrete-Time Model

We examine decision making under bounded rationality using a real business cycle model

with taxation on wages and capital. In this RBC model households maximize their utility

according to the following function of consumption and labor,

V (k0, z0) = max
ct,kt+1,ht

Et
∞∑
t=0

βt
{
c1−σ
t

1− σ
− χ h

1+ϕ
t

1 + ϕ

}
. (20)

This maximization problem is subject to the following constraints on consumption and cap-

ital accumulation

ct + kt+1 = Akαt (ztht)
1−α − δkt (21)

kt+1 = (1− δ)kt + it. (22)

Firms in this economy seek to maximize profits according to their costs and production capa-

bilities with a Cobb-Douglas production function, f(kt, ztht) = Akαt (ztht)
1−α. Productivity,

zt, evolves according to

log(zt) = θz log(zt−1) + εzt . (23)

and εzt ∼ N(0, σ2
z). The LQ format necessary for implementing SP-learning in our social

planner’s problem must be linearized about the steady state, thus we must first find the

non-stochastic steady state of the system. We use these steady state values to build the

LQ version of the model by recasting the objective function to depend solely on state and

choice variables than then re-writing this new objective function as a second degree Taylor

expansion about the system’s steady state (Ljungqvist and Sargent, 2012).

To use the LQ framework we want need the RBC model in the following form

V (x0) = max
xt,ut

Et
∞∑
t

βtr(xt, ut).
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where ut is a vector of the agent’s choice variables and xt is a vector of state variables. These

state variables evolve according to the following process,

xt+1 = Axt +But + εt

Reformatting the problem is accomplished using the modified equation for consumption. Us-

ing this, the objective function depends solely on capital, labor, investment, and technology

r(xt, ut) =
1

1− σ
[Akαt (ztht)

1−α − it − gt]1−σ − χ
h1+ϕ
t

1 + ϕ
.

The vectors xt and ut contain the state and control variables for the system respectively—

xt = (1, kt, log(zt), gt)
′ and ut = (ht, it)

′. Now that our maximization problem is rewritten

to depend on xt and ut, we use a second order linear approximation of r(xt, ut) about the

non-stochastic steady state to reformat the maximization problem.

The second-order Taylor expansion about the steady-state where x̄ and ū are the steady-

state values of x and u, can be found using automatic differentiation to compute the partial

derivatives of r(x, u). Once this is complete the problem is easily reformatted into a linear-

quadratic optimization problem,

V (x0) = max
ut
− Et

∞∑
t=0

βt(x̂′tRx̂t + û′tQût + 2x̂′tWût)

where the state variables evolve according to

x̂t+1 = Ax̂t +Bût + Cεt

here x̂t = xt − x̄ and û = ut − ū.
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A =


1 0 0

0 (1− δ) 0

0 0 θz

 B =


0 0

0 1

0 0

 C =


0

0

1


The matrices that define the objective function—R, Q and W– will be the same as before.

These matrices combined with the matrices that define the state variables’ evolution—A, B,

and C—can solve the value function problem for the system above

V (x̂t, ût) = −x̂′tRxt − û′tQût − 2x̂′tWût + βEtV (xt+1, ut+1).

To get a closed-form solution to this problem we posit that the value function takes the

form V (xt) = −x̂tPx̂t − ξ, where P is a positive semi-definite matrix that summarizes the

evolution of value function Hansen and Sargent (2013). Thus, we can rewrite the problem

above as

−x̂tPx̂t−ξ = −x̂′tRx̂t− û′tQût−2x̂′tWût−β(Ax̂t+Bût)
′P (Ax̂t+Bût)−βtrace(PCC ′)−βξ.

To simplify this system we eliminate û by taking the first-order condition with respect to û,

this yields our policy function

ût = −(Q+ βB′PB)−1(βB′PB +W ′)x̂t = −Fx̂t

Next, using a well-established algorithm we can use the matrices above to calculate the

matrix P that summarizes the evolution of the value function. In this stochastic discrete-

time setting this algorithm will take the form,

Pj+1 = R + βA′PjA− (βA′PjB +W ′)(Q+ βB′PjB)−1(βB′PjA+W ) (24)

ξj+1 = β(1− β)−1trace(Pj+1CC
′) (25)
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the subscript j represents iterations of the recursive solution method and P0 is set exoge-

nously.

A.1 Shadow-Price Learning in the Discrete Model

The iterative solution method outlined in the previous section, provides more information

about the system than simply the solution. In the recursive algorithm outlined in (24) and

(25) an initial guess or perception of the equilibrium in these equations maps to an updated

perception of the value function matrix.

We can describe this mapping between perceptions and actuality using an adaptive learn-

ing tool called the T-map. The T-map is constructed by examining the link between agents’

perceptions and the updated value function that results from these perceptions. The T-map

is derived by examining the induced value functions for perception, V P (x) = −xT (P )x. For

the discrete non-stochastic case (C = 0) the value function induced by a perceived matrix

P is

V P (x) = max
u
− (x′Rx+ u′Qu+ 2x′Wu)− β(Ax+Bu)′P (Ax+Bu).

Once we characterize agent’s control decision we can then describe the T-map, T (P ). In the

discrete setting the control decision will take the following form,

F (P ) = (Q+ βB′PB)−1(βB′PA+W ′)

using this we can rewrite the induced value function for perceptions as

T (P ) = R + βA′PA− (βA′PB +W )′(Q+ βB′PB)−1(βB′PA+W ′).

This is the mapping between agent’s perceptions and actuality in this model. The fixed

point of the T-map is the unique steady-state solution for our system (Evans and McGough,

2018).
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We, as in the continuous-time case, impose a linear forecasting rule for µt since long the

optimal path µ∗t = −2P ∗xt. For additional simplification we assume that the agent forecasts

a matrix H instead of −2P ∗; thus

µt = Hxt + εµt (26)

This forecasting rule is what our agent believes at time t, the rule acts as a perceived law

of motion (PLM). Our agent wants to develop a forecast of future prices using this linear

relationship and their beliefs about transition matrix for the state variables A,

Et+1µt+1 = HEt+1(xt+1) = H(Ãxt +But)

in this forecast Ã represents the agent’s estimation of A. When the agent uses this esti-

mate in their decision making they will estimate the following policy rule and shadow-price

parameters

u = (2Q− βB′HB)−1(βB′HÃ− 2W ′) = F SPD(H, Ã, B)x (27)

and

µ =
(
− 2R− 2WF SPD(H, Ã, B) + βÃ′H

(
Ã+BF SPD(H, Ã, B)

))
x (28)

= T SPD(H, Ã, B)

Equation (28) defines the T-map for our learning rule, this maps the agent’s perceived law

of motion to the actual law of motion for the system. In our models the agent takes in more

information over time using new data. The basic forecasting model the agent implement is,

xt+1 = Atxt +But + εxt

µt = Htxt + εµt

where εµt and εµt are error terms. The agent updates their estimates of At and Ht using this
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new information. Below is a dynamic system describing how the agent estimates At and Ht,

and how this estimations evolve over time under bounded rationality (Evans and McGough,

2018).

xt = Axt−1 +But−1 + Cεt

Rt = Rt−1 + γt(xtx
′
t −Rt−1)

H ′t = Ht−1 + γtR−1
t−1xt−1(λt−1 −Ht−1xt−1)′

A′t = At−1 + γtR−1
t−1xt−1(xt −But−1 − At−1xt−1)′ (29)

ut = −F SPD(Ht, At, B)xt

= (2Q− βB′HB)−1(βB′HAt − 2W ′)xt

µt = T SPD(Ht, At, B)xt

=
(
− 2R− 2WF SPD(Ht, At, B) + βA′tH

(
At +BF SPD(Ht, At, B)

))
xt

γt = κ(t+N)−ν .

Here Rt is a measurement for the second moment of the state variable observations xt and

γt is a standard gain sequence. For our purposes we will use a constant gain thus κ = 0.01

and ν = 0.

A.1.1 Learning Results

The algorithm in (29) was applied to a misspecified version of the RBC model outlined in

the beginning of this section and a simplified version of the RBC model without government

spending or taxation. For both misspecifications, the initial H and A matrices were set

as identity matrices, and R was set to fifty times an identity matrix. The initial x and u

observations were set near their steady-state values, despite being in deviation from steady-

state form. In the discrete-time RBC model we used typical parameter values for the many

of the model parameters, the parameter χ was set so that the portion of hours worked in
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the non-stochastic steady state was 33% (Hansen, 1985). Below is a table summarizing our

parameter values.

Table 6: Discrete-Time Parameter Values

Description Value

A Total Factor Productivity 1.0

β Discount factor 0.99

σ Intertemporal elasticity of subst. 1.0 (log utility)

ϕ Frisch elasticity of labor supply -1.0 (log utility)

χ Disutility of labor 1.75

α Capital share 1/3

δ Depreciation rate 0.025

θ Drift parameter for tech. 0.895

σz Standard Deviation for tech. 0.01

The agent in this setting understands the basic structure of the transition matrix A and

does not use the constant in estimating parameters, instead they estimate coefficients for the

processes governing technology and capital using only relevant data. Similar results can be

achieved when the agent uses the full set of regressors. Since we use constant gain, the agent’s

forecast of these parameters oscillates around their rational expectations equilibrium (REE)

value, since the agent places equal weight on the information gained from all observations.

The simple model without government spending was run for 50, 000 discrete time periods,

at the end of which subtracting the shadow-price parameter matrix from its REE counterpart

results in matrix with a norm of 2.42.
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B Deriving Continuous-time Recursive Least Squares

First, we define the recursive least squares algorithm. Then, we rewrite our model to depend

on time steps ∆ to derive a continuous-time version of recursive least squares. Similar

approaches for deriving continuous-time recursive algorithms have been outlined in Ljung

(1977), Lewis et al. (2007), Sargent (1999). The recursive least squares approach begins with

the following difference equation model,

yt = θ′xt + et

where et ∼ N(0, 1). Here we can estimate the model by choosing an estimate the minimizes

the errors of the model. We select a least-squares method,

VN(θ) =
1

N

N∑
t=1

αt[yt − θ′xt]2 (30)

where N is the number observations in the data and αt is a weighting vector that depends on

time. The weighting vector αt is indirectly related to the gain sequence in adaptive learning

literature, for the derivation of RLS it is often set to 1. Implementing this least-squares

method we can derive RLS,

θ̂t = θ̂t−1 +
1

t
R−1
t xtαt[yt − θ̂′t−1xt],

Rt = Rt−1 +
1

t
[αtxtx

′
t −Rt−1]

Note that for illustrative purposes we use a decreasing gain version of our algorithm, the

agent puts a decreased amount of weight on observations observed at a later date. Our

reason for examining a decreasing gain version of our system is because the derivation of

this version of RLS is more intuitively derive from a least squares algorithm. This recursive

algorithm estimates coefficients based on observations and an estimate of the second moment
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Rt. The avoid the matrix inversion in the system above we can instead use Pt = (t ·Rt)
−1.

Pt = [P−1
t−1 + xtαtx

′
t]
−1

= Pt−1 −
Pt−1xtx

′
tPt−1

1/αt + x′tPt−1xt
.

Thus our system will become,

θ̂t = θ̂t−1 + Lt[yt − θ̂′txt], (31)

Lt =
Pt−1xt

1/αt + x′tPt−1xt
, (32)

Pt = Pt−1 −
Pt−1xtx

′
tPt−1

1/αt + x′tPt−1xt
. (33)

We can discretize this model and derive a continuous-time version of recursive least

squares. The discretized version of our model with an undetermined time step ∆ is,

yt = θ′txt + et

Where, the covariance matrix for et ∼ N(0, 1
αt∆

) as in Lewis et al. (2007). First, we can

examine the gain term in (32). Rewriting (32) for this model yields,

Lt = Pt−∆xt[(1/αt∆) + xtPt−∆x
′
t]
−1

= Pt−∆xt∆[1/αt + xtPt−∆x
′
t∆]−1.

Dividing through by ∆ and then taking the limit as ∆→ 0,

K = lim
∆→0

1

∆
Lt = αtPtxt
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Next, if we look at (33) we can rewrite this equation as,

Pt − Pt−∆ = −Pt−∆xtx
′
tPt−∆[(1/αt∆) + xtPt−∆x

′
t]
−1

= −Pt−∆xtx
′
tPt−∆∆[1/αt + xtPt−∆x

′
t∆]−1.

Dividing through by ∆ and taking the limit as ∆→ 0,

dPt
dt

= −Ptxtx′tPt = −Kx′tPt.

Last, we can derive the continuous-time estimate updating equation (31). Rewriting this

equation and diving through by ∆ yields,

1

∆

(
θ̂t − θ̂t−∆

)
=

1

∆
Lt[yt − θ̂′t−∆xt].

Limiting this as ∆→ 0 we get,

dθ̂t
dt

= K[yt − θ̂′txt].

Assuming ∆ ≈ 0 our continuous-time RLS algorithm is thus,

dPt
dt

= K[yt − θ̂′txt]

dPt
dt

= −Kx′tPt (34)

K = αtPtxt.

The version of the algorithm depicted in (34) uses time derivatives unlike our maintain

specification; this does not change the algorithm’s outcomes.
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