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Why the Stochastic Continuous Time setting?

Being able to create models in the continuous time setting has a
few key advantages:

» Continuous time models can be more intuitive

» The continuous time analog of the Bellman equation the
Hamilton-Jacobi-Bellman (HJB) has a unique closed form
solution

» These models use continuous stochastic processes for the
evolution of variables, which will allow us to examine
distributions of variables
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Intuition

Why are continuous time models more intuitive?
» We might believe some variables evolve continuously

» Stock prices
» Productivity/technological progress
> etc.

» We might also believe that a variable has a continuous pdf
and has an approximately continuous distribution
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The Hamilton-Jacobi-Bellman Equation

A general HJB equation is:
1
pV(z) = max u(c) + a(z)V'(x) + ib(az)QV”(x)

with
dx = a(z)dt + b(xz)dW;

v

This can be derived from a discrete Bellman equation using
[t6 calculus

» It has a unique solution to the value function problem

v

This unique solution is something we call a viscosity solution

v

It also only requires weak boundary conditions
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Deriving The HJB |

An intuitive way to find HJB is to start with the discrete time
Bellman equation (Dixit, 1993).

V(k,t) = max u(c)At + e PAE[V (k 4+ Ak, t 4+ At)]

Then, using the power series expansion of e P2t
pAtV (k,t) = max u(c)At+(1—pAt)E[V (k+Ak, t+At)—V (k, )]

Next we have to use stochastic calculus to find the value of this
expectation
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Deriving The HJB Il

Suppose:
Ak = a(k)At + b(k) AWt

Where AW, is the increment of the Wiener process or eV At

Using It6's lemma:

V(k+Ak, t+At) -V (k,t) = Vt(k,t)At—l—Vk(k,t)(Ak)+%ka(k,t)(Ak)2
Carrying through the expectation will yield:

E[V(k + Ak, t + At) — V(k,t)] =
Vik, t)At + Vi, t)a(k) At + %ka(k:, 1b(k)2AL
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Deriving The HJB IlI

Plugging this into our previous equation:

pAtV (k,t) = max u(c)At

c

+ (1= pA)(Vilkst) + Vilk, t)alk) + %ka(k,t)b(k)Q)At

Then if we divide by At and take the limit as At — 0 we get the
standard HJB

pV (k) = max u(c) + Vi(k, 1) + Vi(k. Da(k) + %vkkuf, Pb(k)2
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A Special Case with an Analytical Solution |

v

Preferences: u(c) = logc
Technology: zF'(k) = zk
Productivity follows a generic diffusion process:

v

v

dz = p(z)dt + o(z)dWy

v

Capital evolves according to:

dk = (z —p—0)kdt

v

Thus our HIB equation is:
pV(k,z) = max logc+ Vi(k, 2)(zk — 0k — ¢)

+ Vo(k,2)u(z) + %sz(k:, 2)o?(2)
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A Special Case with an Analytical Solution Il

» Now suppose:
1. ¢=pk, thus dk = (z — p — ) kdt

2. Guess that the value function is of the form:
> Vi(k,z) =v(z) + klog(k)
» Our FOC will be:
, 1
u(c) =Vi(k,z) = - =
c
» plugging this into our HJB equation

plv(2) + K log(k)] = log(k) — log(k) + g[zk — 6k — k/K]

() + 5 (2)0*(2)
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What is the Viscosity Solution?

» The basic idea is that our value function may have kinks and
may not be differentiable

» So, we replace the derivative where it does not exist
» The viscosity solution of an HJB equation will have the
following form:

<r(z*,a)+ ¢'(z)f(z*,«) v — ¢ has a local max at z*
* acA
pu(a”) ) , ) . )
>r(z*,a)+ ¢'(z)f(z*,a) v— ¢ has a local min at x
acA

» If v is differentiable at z* then v/(z*) = ¢/(z*)
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More on the Viscosity Solution

If there is Brownian motion in our problem we would see
“vanishing viscosity"”

v

i.e. the movements in a viscous fluid would go to zero

v

This method helps us find a unique solution because it
eliminates solutions with concave kinks

Our HJB will converge to a unique viscosity solution given
three conditions

1. Monotonicity
2. Consistency
3. Stability

v

v
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Solving a Stochastic Continuous-Time Problem |

Using numerical methods we can solve a standard HJB equation:

1
pV(xz) = max u(c) + p(x)Vy + ia(az)ZVm
Where x evolves according to:

dx = p(z)dt + o(x)dWs

and
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Solving a Stochastic Continuous-Time Problem I

Kolmogorov Forward (Fokker-Planck) Equation

» If we want information about the distribution of a parameter
we also need to solve the Kolmogorov Forward Equation (KF)

» Suppose we have a diffusion process
dx = p(x)dt + o(x)dW; and z(0) = zg
» Given an initial distribution g(x,0) = go(x) then g(z, 1)
satisfies

dg(x,t) 0 1 0?

Fram —%[u(a})g(:ﬁ, t)] + 57[02(1‘)9(%75)]
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A Steady State Solution |

Key Assumptions:

>

>

>

We are at steady state, i.e. V(z,t) =V (z,0)
And 0 = — 2 [u(2)g(2)] + 3 Zzlo*()g(x)]
We can discretize the HJB over our state spaces

We can then write our partial derivatives as backward or
forward differences

We'll choose the backward or forward difference based on the
drift of our state variable
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A Steady State Solution Il

» First we need to discretize our HJB equation

» We do this by approximating the derivatives of our Value
function

Vigr = Vi o Vi—Viea

Vier = 2Vi+Viq

Vi (2) = (A2)?
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A Steady State Solution Il

» Thus, the discretized HJB will be:

PV (1) = u(cr) + Valwu(x) + 5 Vi (m)o (@)’

» Where
ci = (u) " [Va(ai)]

» Now that the HJB is discretized we use finite difference
method to find the steady state solution
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A Steady State Solution IV

The HJB Algorithm, the implicit method:

1. Compute V; for all x

N

Compute the value of consumption from ¢; = (u/) =1 [V,(z;)]

w

Implement an upwind scheme to find “correct” V,,

>

Using the coefficients determined by the upwind scheme
create a transition matrix for this system

5. Solve the following system of non-linear equations

VnJrl —_yn
VT ) A

6. Iterate until V1 — V" a0
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A Steady State Solution V

The KF Algorithm, the implicit method:
1. Discretize the KF equation.

» This will give us the eigenvalue problem ATg =0
2. Solve this system for g
3. Normalize g to get g
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A Time Dependent Solution |

Before you can compute a time dependent system you need:
1. An initial condition for KF
» This can be found similarly to the steady state value
2. A terminal condition for the HJB
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A Time Dependent Solution Il

The HJB Algorithm:

1.

Compute V,, for all =

2. Compute the value of consumption from ¢; = (u/) ™[V, (2;)]
3.
4

. Using the coefficients determined by the upwind scheme

Implement an upwind scheme to find “correct” V,,

create a transition matrix for this system

Solve the following system of non-linear equations iterating
backward in time from the steady state

Vt+1 o Vt

X gt Aty

pvt+1 +
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A Time Dependent Solution Ill

The KF Algorithm:

1. Load the transition matrix found by solving the HJB, starting
from A;

» This will give us the eigenvalue problem
ge1 = (I = Afdt) " g,

» There is no need for rescaling since this scheme preserves
mass

2. Repeat for all time periods
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A Time Dependent Solution with Shocks

The Algorithm:

1. Compute the steady state, with idiosyncratic shocks
2. Linearize the system about the steady state
» This requires automatic differentiation
3. If necessary reduce the model
» Distribution Reduction
» Value Function Reduction
4. Solve the linearized (reduced) system
5. Analyze aggregate shocks to this system using the time
dependent equations

Skip to end

Macrogroup Fall 2018

22



A Krusell-Smith Model |

From Ahn et al. (2018).

» Agents have preferences described by the following utility

function
1-6

E Tt g
0_/0 “ 179

» Also households have idiosyncratic labor productivity
Zjt S {ZL,ZH}.
» Households switch between these two values according to a
Poisson process with frequency Ay, and Ay
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A Krusell-Smith Model Il

» A representative firm has the following production function
Y;g _ eZth‘Ntl_a
» Where Z; evolves according to the following process

dZt = —T]tht + O'th
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A Krusell-Smith Model IlI

Equilibrium in this model is given by

pve(a, z) = max u(c) + Oqui(a, 2)(wiz + ra — c)
C

+ A (vi(a, ) = wila, 2)) + éEt[d’Ut(a, z)] (1)
dgtgz’Z) = —0u[s1(a, 2)g:(a, 2)] — A\ogi(a, 2) + Awgi(a, 2')  (2)
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A Krusell-Smith Model IV

And by the following conditions
wy = (1 — a)eZthaN_a
re = aeZt KOTINT=e 5
K, = /agt(a, z)dadz
With optimal savings policy

St(a’a Z) =wz +ra — Ct(av Z)
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A Krusell-Smith Model V

The steady state for this system is given by

pv(a,z) = max u(c) + Oqv(a, 2)(wz +ra—c)X(v(a,2') —v(a,2)) (1)
0= —dals(a, 2)g(a, 2)] = Azg(a, 2) + Axg(a, 2') (2)
w=(1-a)KFN"“ (3)
r=aK* INTTY —§ (4)
K= / ag(a, z)dadz (5)

With optimal savings policy

s(a,z) = wz+ra—c(a, z) (6)
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A Krusell-Smith Model VI

The discretized steady state is the solution to:

pv = u(v) + A(v;p)v
0=A(v;p)'yg

p=F(g)

Macrogroup
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A Krusell-Smith Model VII

After finding the steady-state we linearize the following system:

Macrogroup

1
pvr = u(ve) + A(ve; pe)ve + —Epduoy

dt
0g¢ T
2 Ay
ot (Utapt) 9t
dZt = —ntht + O'th
e = F(g; Zt)
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A Krusell-Smith Model VIII

The first order Taylor expansion of this system can be written as:

6,1 By, 0 0 By [0
dje|  |Bp By 0 Byl | g
Elazl= 1o o —y ollz|®
O 0 Bpg BpZ _I ﬁt
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A Krusell-Smith Model IX

The solution to this system will be: After finding the steady-state
we linearize the following system:

Uy = Dyggt + Dyz 2y (1)

0§ .
% = (Bgg + BgpBpg + BguDug)t + (BgpBpz + BguDy2)Zt (2)
dZt = —ntht + O'th (3)
Dt = Bpggt + Bpz Zy (4)
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Results |

Macrogroup

% deviation from s.s

o o o
= 2 =
TR B

% deviation from s.s.

g 88

e
5
5]

TFP Output.
08
06
04
02
0
10 20 30 40 50 0 10 20 30 0 50

Consumption

Investment

£

10

20 30
Quarters

10 20 30 w0 50



Results 1l

Aggregate Capital

Nonlinearly Aggregated
354 Reduced Model Forecast

353

0 50 100 150 200 250 300 350 400
Quarters

Macrogroup Fall 2018 33



A Two Asset HANK Model |

Each household has preferences given by
Eo/ e~ (Pt log c;dt (1)
0

They hold liquid or illiquid assets b; and a;

db; — —cjt—d

Tiit =1 —-7)wzj + T+ 7“bbjt x(dje, aze) — cji Jt (2)
da;
dt dt]t =riaj + djt (3)

labor productivity zj; follows a discrete-state Poisson process and
switch states with Poisson intensity A,/
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A Two Asset HANK Model Il

There is a representative firm with the Cobb-Douglas production
function
Y, = e KL (4)

where

dZt = —ntht + O'th (5)

The government adjusts each period to meet the following
constraint:

1 1
/ T’U)thtdj == Gt + / Td] (6)
0 0

The asset market clearing condition is:
1
Kt = / ajtdj (7)
0
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A Two Asset HANK Model [l1

The household’'s HIB will be:

(p+¢)vi(a, b, z) = max loge

+ Opve(a, b, 2)((1 — T)wzje + T + rbbjt — X(dji, ajt) — cje — djt)
+ 04ve(a, b, z)(riaj + dji)

1
+ Z Ao (ve(a, b, 2') — vi(a, b, 2)) + aEt[dvt(a, b, 2)]

Macrogroup Fall 2018 36



A Two Asset HANK Model IV

dgi(a, b, z)
dt

- _8(1 (Sg(av b7 Z)gt(aa ba Z)) - 617 (8?(0,, b7 z)gt(a, ba Z))
- Z Azz’gt(av b’ Z) + Z Az’zgt(av b’ Z)

z z

—Cgi(a,b,2) + (6(a)d(b)g"(2)
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A Two Asset HANK Model V

Equilibrium prices will solve:

rt = ae?t KO L 5

wy = (1 —a)e?t KPL™

Market clearing will be determined by:

K, = /agt(a, b, z)dadbdz

B = /bgt(a,b, z)dadbdz

Macrogroup
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A Two Asset HANK Model VI

Liguid wealth distribution
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A Two Asset HANK Model VI
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A Two Asset HANK Model VIII

TFP Output Consuraption

deviation
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A Two Asset HANK Model IX

Macrogroup
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Conclusion

» Modeling large complicated markets with heterogeneity is
efficient in this setting

» Krusell-Smith model: 0.116-0.267 sec (2016 Mac-Book Pro)
» Two Asset HANK: 148.14-286.24 sec (2016 Mac-Book Pro)

» The inequality shown in these models is an important feature
not represent in representative agents models

» In this setting we can further explore inequality using
distributions

» It would be better to focus on using microdata that captures
the distribution of variables in the future
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